在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,F(xiàn)G∥BC,EG∥AC,AB=2EF.
(1)若M是線段AD的中點(diǎn),求證:GM∥平面ABFE;
(2)若AC=BC=2AE=2,求二面角A-BF-C的余弦值.
考點(diǎn):與二面角有關(guān)的立體幾何綜合題,直線與平面平行的判定
專題:空間角
分析:(1)由已知條件推導(dǎo)出∠EGF=90°,△ABC∽△EFG,連結(jié)AF,推導(dǎo)出四邊形AFGM為平行四邊形,由此能證明GM∥平面ABFE.
(2)分別以AC,AD,AE所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系A(chǔ)-xyz,利用向量法能求出二面角A-BF-C的余弦值.
解答: (1)證明:∵EF∥AB,F(xiàn)G∥BC,EG∥AC,∠ACB=90°,
∴∠EGF=90°,△ABC∽△EFG.….(2分)
∵AB=2EF,∴BC=2FG,
連結(jié)AF,F(xiàn)G∥BC,F(xiàn)G=
1
2
BC
,….(3分)
在平行四邊形ABCD中,M是線段AD的中點(diǎn),
∴AM∥BC,且AM=
1
2
BC,….(4分)
∴FG∥AM,且FG=AM,
∴四邊形AFGM為平行四邊形,∴GM∥FA,
又FA?平面ABFE,GM不包含于平面ABFE,
∴GM∥平面ABFE.…(6分)
(2)解:∵∠ACB=90°,∴∠ACD=90°,
又EA⊥平面ABCD,∴AC,AD,AE兩兩垂直.
分別以AC,AD,AE所在直線為x軸、y軸、z軸,
建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz.….(7分)
則由題意知A(0,0,0),B(2,-2,0),
C(2,0,0),D(0,0,1)….(8分)
AB
=(2,-2,0),
BC
=(0,2,0),
又EF=
1
2
AB
,∴F(1,-1,1),
BF
=(-1,1,1).
設(shè)平面BFC的法向量
m
=(x,y,z),
m
BC
=2y=0
m
BF
=-x+y+z=0
,
取x=1,得
m
=(1,0,1)….(10分)
設(shè)平面ABF的法向量
n
=(x1,y1,z1),
n
AB
=2x1-2y1=0
n
BF
=-x1+y1+z1=0
,
取x1=1,得
n
=(1,1,0).….(12分)
∴cos<
m
n
>=
1
2
2
=
1
2
,
故二面角A-BF-C的余弦值為
1
2
.….(14分)
點(diǎn)評(píng):本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4內(nèi)一定點(diǎn)Q(1,0),過點(diǎn)Q作傾斜角不為0°的直線L交圓O于A、B兩點(diǎn).
(1)若
AQ
=2
QB
,求直線L的方程;
(2)試證在x軸上存在一定點(diǎn)M,使得MQ平分∠AMB,并求出定點(diǎn)M的坐標(biāo);
(3)對(duì)于(2)中的點(diǎn)M,若∠AMB=60°,求△AMB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x.
(1)若圓心在拋物線y2=4x上的動(dòng)圓,大小隨位置而變化,但總是與直線x+1=0相切,求所有的圓都經(jīng)過的定點(diǎn)坐標(biāo);
(2)拋物線y2=4x的焦點(diǎn)為F,若過F點(diǎn)的直線與拋物線相交于M,N兩點(diǎn),若
FM
=-4
FN
,求直線MN的斜率;
(3)若過F點(diǎn)且相互垂直的兩條直線l1,l2,拋物線與l1交于點(diǎn)P1,P2,與l2交于點(diǎn)Q1,Q2.證明:無論如何取直線l1,l2,都有
1
|P1P2|
+
1
|Q1Q2|
為一常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
2
2
,它的一個(gè)焦點(diǎn)恰好與拋物線y2=4x的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)設(shè)橢圓的上頂點(diǎn)為A,過點(diǎn)A作橢圓C的兩條動(dòng)弦AB,AC,若直線AB,AC斜率之積為
1
4
,直線BC是否一定經(jīng)過一定點(diǎn)?若經(jīng)過,求出該定點(diǎn)坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A的圓心在直線L1:x+y-3=0上且與直線L2:3x+4y-35=0相切于點(diǎn)B,圓A在直線L3:3x+4y+10=0上截得的弦長CD為6,求圓A的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某旅游景點(diǎn)有一座風(fēng)景秀麗的山峰,山上有一條筆直的山路BC和一條索道AC,小王和小李打算不坐索道,而是花2個(gè)小時(shí)的時(shí)間進(jìn)行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1(千米),AC=3(千米).假設(shè)小王和小李徒步攀登的速度為每小時(shí)1200米,請(qǐng)問:兩位登山愛好者能否在2個(gè)小時(shí)內(nèi)徒步登上山峰.(即從B點(diǎn)出發(fā)到達(dá)C點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)F(0,1)和直線l:y=-1,過點(diǎn)F且與直線l相切的動(dòng)圓圓心為點(diǎn)M,記點(diǎn)M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若點(diǎn)A的坐標(biāo)為(2,1),直線l1:y=kx+1(k∈R,且k≠0)與曲線E相交于B,C兩點(diǎn),直線AB,AC分別交直線l于點(diǎn)S,T.試判斷以線段ST為直徑的圓是否恒過兩個(gè)定點(diǎn)?若是,求這兩個(gè)定點(diǎn)的坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某選手欲參加“開心辭典”節(jié)目,但必須通過一項(xiàng)包含5道試題的達(dá)標(biāo)測(cè)試.測(cè)試規(guī)定:對(duì)于提供的5道試題,參加者答對(duì)3道題即可通過.為節(jié)省測(cè)試時(shí)間,同時(shí)規(guī)定:若答題不足5道已通過,則停止答題,若答題不足5道,但已確定不能通過,也停止答題.假設(shè)該選手答對(duì)每道題的概率均為
2
3
,且各題對(duì)錯(cuò)互不影響.
(Ⅰ)求該選手恰好答完4道題就通過點(diǎn)的概率;
(Ⅱ)設(shè)在一次測(cè)試中該選手答題數(shù)位ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2,離心率為
2
2
.過點(diǎn)M(2,0)的直線l與橢圓C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
OA
OB
的取值范圍;
(Ⅲ)若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)是N,證明:直線AN恒過一定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案