如圖所示,某旅游景點(diǎn)有一座風(fēng)景秀麗的山峰,山上有一條筆直的山路BC和一條索道AC,小王和小李打算不坐索道,而是花2個(gè)小時(shí)的時(shí)間進(jìn)行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1(千米),AC=3(千米).假設(shè)小王和小李徒步攀登的速度為每小時(shí)1200米,請(qǐng)問(wèn):兩位登山愛(ài)好者能否在2個(gè)小時(shí)內(nèi)徒步登上山峰.(即從B點(diǎn)出發(fā)到達(dá)C點(diǎn))
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:應(yīng)用題,解三角形
分析:先利用正弦定理,求出AD,再在△ADC中,由余弦定理,求出DC,即可得出結(jié)論.
解答: 解:由∠ADC=150°知∠ADB=30°,
由正弦定理得
1
sin300
=
AD
sin1200
,所以,AD=
3
.---------------------------------------(4分)
在△ADC中,由余弦定理得:|AC|2=|AD|2+|DC|2-2|AD|•|DC|cos150°,
32=(
3
)2+DC2-2•
3
•DCcos1500
,即DC2+3•DC-6=0,
解得DC=
-3+
33
2
≈1.372
(千米),----------------------------------------(10分)
所以|BC|≈2.372(千米),--------------------------------------------------------(12分)
由于2.372<2.4,所以兩位登山愛(ài)好者能夠在2個(gè)小時(shí)內(nèi)徒步登上山峰.---(14分)
點(diǎn)評(píng):本題考查解三角形的實(shí)際應(yīng)用,考查正弦定理、余弦定理,考查學(xué)生的計(jì)算能力,正確運(yùn)用正弦定理、余弦定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=loga
1
a
-
1
x
),其中0<a<1.
(1)證明f(x)在區(qū)間(a,+∞)上是減函數(shù);
(2)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求x的取值范圍:(x+2)(x-a)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={a,0},N={x|x2-3x<0,x∈Z},而且M∩N={1},若P=M∪N,寫出集合P的所有子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,F(xiàn)G∥BC,EG∥AC,AB=2EF.
(1)若M是線段AD的中點(diǎn),求證:GM∥平面ABFE;
(2)若AC=BC=2AE=2,求二面角A-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)的數(shù)學(xué)測(cè)試中設(shè)置了“數(shù)學(xué)與邏輯”和“閱讀與表達(dá)”兩個(gè)內(nèi)容,成績(jī)分為A、B、C、D、E五個(gè)等級(jí).某班考生兩科的考試成績(jī)的數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中“數(shù)學(xué)與邏輯”科目的成績(jī)等級(jí)為B的考生有10人.

(1)求該班考生中“閱讀與表達(dá)”科目中成績(jī)等級(jí)為A的人數(shù);
(2)若等級(jí)A、B、C、D、E分別對(duì)應(yīng)5分、4分、3分、2分、1分,該考場(chǎng)共10人得分大于7分,其中2人10分,2人9分,6人8分,從這10人中隨機(jī)抽取2人,求2人成績(jī)之和ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={y|y=x2-2ax+3b},B={y|y=-x2+2ax+7b},且A∩B={y|2≤y≤8},求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓x2+2y2=a2(a>0)的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓C的方程;
(2)已知直線y=k(x-1)與橢圓C交于A、B兩點(diǎn),若點(diǎn)M(
11
4
,0),求證
MA
MB
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F為拋物線y2=2px(p>0)的焦點(diǎn),R,S,T為該拋物線上三點(diǎn),若
FR
+
FS
+
FT
=
0
,且|
FR
|+|
FS
|+|
ST
|=6.
(Ⅰ)求拋物線y2=2px的方程;
(Ⅱ)M點(diǎn)的坐標(biāo)為(m,0)其中m>0,過(guò)點(diǎn)F作斜率為k1的直線與拋物線交于A,B兩點(diǎn),A,B兩點(diǎn)的橫坐標(biāo)均不為m,連接AM、BM并延長(zhǎng)交拋物線于C、D兩點(diǎn),設(shè)直線CD的斜率為k2
k1
k2
=4,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案