【題目】在平面直角坐標(biāo)系中,曲線(xiàn):(α為參數(shù))經(jīng)過(guò)伸縮變換得到曲線(xiàn),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線(xiàn)l的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程;
(2)設(shè)點(diǎn)P是曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)P到直線(xiàn)l距離d的最大值.
【答案】(1);(2).
【解析】
(1)把轉(zhuǎn)化為直角坐標(biāo)方程,把代入到直角坐標(biāo)方程中即可
(2)設(shè)點(diǎn)P的坐標(biāo)為,把直線(xiàn)l的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,用點(diǎn)到直線(xiàn)的距離公式表示出點(diǎn)P到直線(xiàn)l距離,進(jìn)一步求三角函數(shù)式的最大值.
解:(1)由題意得曲線(xiàn):(為參數(shù))的普通方程為.
由伸縮變換得
代入,得.
∴的普通方程為
(2)因?yàn)?/span>,所以可化為:
.
∴直線(xiàn)l的普通方程為.
因?yàn)辄c(diǎn)P是曲線(xiàn)上的動(dòng)點(diǎn),所以設(shè)點(diǎn)P的坐標(biāo)為,
則點(diǎn)P到直線(xiàn)l的距離
當(dāng)時(shí),,
所以點(diǎn)P到直線(xiàn)l距離d的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),已知方程(為常數(shù))在上恰有三個(gè)根,分別為,下述四個(gè)結(jié)論:
①當(dāng)時(shí),的取值范圍是;
②當(dāng)時(shí),在上恰有2個(gè)極小值點(diǎn)和1個(gè)極大值點(diǎn);
③當(dāng)時(shí),在上單調(diào)遞增;
④當(dāng)時(shí),的取值范圍為,且
其中正確的結(jié)論個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新型冠狀病毒屬于屬的冠狀病毒,人群普遍易感,病毒感染者一般有發(fā)熱咳嗽等臨床表現(xiàn),現(xiàn)階段也出現(xiàn)無(wú)癥狀感染者.基于目前的流行病學(xué)調(diào)查和研究結(jié)果,病毒潛伏期一般為1-14天,大多數(shù)為3-7天.為及時(shí)有效遏制病毒擴(kuò)散和蔓延,減少新型冠狀病毒感染對(duì)公眾健康造成的危害,需要對(duì)與確診新冠肺炎病人接觸過(guò)的人員進(jìn)行檢查.某地區(qū)對(duì)與確診患者有接觸史的1000名人員進(jìn)行檢查,檢查結(jié)果統(tǒng)計(jì)如下:
發(fā)熱且咳嗽 | 發(fā)熱不咳嗽 | 咳嗽不發(fā)熱 | 不發(fā)熱也不咳嗽 | |
確診患病 | 200 | 150 | 80 | 30 |
確診未患病 | 150 | 150 | 120 | 120 |
(1)能否在犯錯(cuò)率不超過(guò)0.001的情況下,認(rèn)為新冠肺炎密切接觸者有發(fā)熱癥狀與最終確診患病有關(guān).
臨界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.645 | 7.879 | 10.828 |
(2)在全國(guó)人民的共同努力下,尤其是全體醫(yī)護(hù)人員的辛勤付出下,我國(guó)的疫情得到較好控制,現(xiàn)階段防控重難點(diǎn)主要在境外輸入病例和無(wú)癥狀感染者(即無(wú)相關(guān)臨床表現(xiàn)但核酸檢測(cè)或血清特異性免疫球蛋白M抗體檢測(cè)陽(yáng)者).根據(jù)防控要求,無(wú)癥狀感染者雖然還沒(méi)有最終確診患2019新冠肺炎,但與其密切接觸者仍然應(yīng)當(dāng)采取居家隔離醫(yī)學(xué)觀察14天,已知某人曾與無(wú)癥狀感染者密切接觸,而且在家已經(jīng)居家隔離10天未有臨床癥狀,若該人員居家隔離第天出現(xiàn)臨床癥狀的概率為,,兩天之間是否出現(xiàn)臨床癥狀互不影響,而且一旦出現(xiàn)臨床癥狀立刻送往醫(yī)院核酸檢查并采取必要治療,若14天內(nèi)未出現(xiàn)臨床癥狀則可以解除居家隔離,求該人員在家隔離的天數(shù)(含有臨床癥狀表現(xiàn)的當(dāng)天)的分布列以及數(shù)學(xué)期望值.(保留小數(shù)點(diǎn)后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線(xiàn)y2=4x焦點(diǎn)F的直線(xiàn)交該拋物線(xiàn)于A,B兩點(diǎn),且|AB|=4,若原點(diǎn)O是△ABC的垂心,則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,P,Q,M,N,H,R是各條棱的中點(diǎn).
①直線(xiàn)平面;②;③P,Q,H,R四點(diǎn)共面;④平面.其中正確的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn):(α為參數(shù))經(jīng)過(guò)伸縮變換得到曲線(xiàn),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線(xiàn)l的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程;
(2)設(shè)點(diǎn)P是曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)P到直線(xiàn)l距離d的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形是邊長(zhǎng)為5的菱形,對(duì)角線(xiàn)(如圖1),現(xiàn)以為折痕將菱形折起,使點(diǎn)達(dá)到點(diǎn)的位置,棱,的中點(diǎn)分為,,且四面體的外接球球心落在四面體內(nèi)部(如圖2),則線(xiàn)段長(zhǎng)度的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義行列式的運(yùn)算如下:,已函數(shù)以下命題正確的是( )
①對(duì),都有;②若,對(duì),總存在非零常數(shù)了,使得;③若存在直線(xiàn)與的圖象無(wú)公共點(diǎn),且使的圖案位于直線(xiàn)兩側(cè),此直線(xiàn)即稱(chēng)為函數(shù)的分界線(xiàn).則的分界線(xiàn)的斜率的取值范圍是;④函數(shù)的零點(diǎn)有無(wú)數(shù)個(gè).
A.①③④B.①②④
C.②③D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:過(guò)點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)若斜率為的直線(xiàn)與橢圓交于不同的兩點(diǎn),,且線(xiàn)段的垂直平分線(xiàn)過(guò)點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com