9.已知橢圓方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F(xiàn)1,F(xiàn)2分別是其左、右焦點,O是坐標原點,A是橢圓上不同于頂點的任一點,$∠A{F_1}{F_2}={30^0},AO=O{F_2}$,該橢圓的離心率e=$\sqrt{3}$-1.

分析 易得AF1F2是以A為直角定點的直角三角形,AF1=2a-c,AF2=c.由勾股定理得,(2a-c)2+c2=(2c)2⇒2ac+c2-a2=0⇒離心率e.

解答 解:A是橢圓上不同于頂點的任一點,$∠A{F_1}{F_2}={30^0},AO=O{F_2}$,
∴△AF1F2是以A為直角定點的直角三角形,∴AF1=2a-c,AF2=c.
由勾股定理得,(2a-c)2+c2=(2c)2⇒,2ac+c2-a2=0⇒離心率e=$\sqrt{3}-1$.
故答案為:$\sqrt{3}-1$.

點評 本題考查了橢圓的離心率,多用定義及平面幾何的知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,在三棱錐A-BCD中,AB⊥AD,AC⊥AD,∠BAC=60°,AB=AC=AD=4,點P,Q分別在側(cè)面ABC棱AD上運動,PQ=2,M為線段PQ中點,當(dāng)P,Q運動時,點M的軌跡把三棱錐A-BCD分成上、下兩部分的體積之比等于$\frac{π}{{48\sqrt{3}-π}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知橢圓C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{9}$=1,若P(x,y)是橢圓C上一動點,則x2+y2-2x的取值范圍是( 。
A.[6-2$\sqrt{6}$,9]B.[6-2$\sqrt{6}$,11]C.[6+2$\sqrt{6}$,9]D.[6+2$\sqrt{6}$,11]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知P:?x∈Z,x3<1,則¬P是( 。
A.?x∈Z,x3≥1B.?x∉Z,x3≥1C.?x∈Z,x3≥1D.?x∉Z,x3≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.實數(shù)2,b,a依次成等比數(shù)列,則方程$a{x^2}+bx+\frac{1}{3}=0$的實根個數(shù)為( 。
A.0B.1C.2D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若直線3x+4y+m=0向左平移2個單位,再向上平移3個單位后與圓x2+y2=1相切,則m=23或13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ln(x-1)-k(x-1)+1(k∈R).
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若f(x)≤0恒成立,試確定實數(shù)k的取值范圍;
(III)證明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{{n({n-1})}}{4}({N∈{N_+}且n≥2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)計算:$\sqrt{9}-\sqrt{2}×\root{3}{2}×\root{6}{2}$
(2)已知x+x-1=3(x>0),求x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某商店將進貨價每個10元的商品按每個18元售出時,每天可賣出60個.商店經(jīng)理到市場上做了一番調(diào)查后發(fā)現(xiàn),若將這種商品的售價(在每個18元的基礎(chǔ)上)每提高1元,則日銷售量就減少5個;若將這種商品的售價(在每個18元的基礎(chǔ)上)每降低1元,則日銷售量就增加10個.為了每日獲得最大利潤,則此商品的售價應(yīng)定為每個多少元?并求獲得的最大利潤.

查看答案和解析>>

同步練習(xí)冊答案