【題目】已知動直線l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9.
(1)求證:無論m為何值,直線l總過定點A,并說明直線l與圓C總相交.
(2)m為何值時,直線l被圓C所截得的弦長最小?請求出該最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是等邊三角形,邊長為4, 邊的中點為,橢圓以, 為左、右兩焦點,且經(jīng)過、兩點。
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過點且軸不垂直的直線交橢圓于, 兩點,求證:直線與的交點在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某地區(qū)兒童的身高與體重的一組數(shù)據(jù),我們用兩種模型①,②擬合,得到回歸方程分別為, ,作殘差分析,如表:
身高 | 60 | 70 | 80 | 90 | 100 | 110 |
體重 | 6 | 8 | 10 | 14 | 15 | 18 |
0.41 | 0.01 | 1.21 | -0.19 | 0.41 | ||
-0.36 | 0.07 | 0.12 | 1.69 | -0.34 | -1.12 |
(Ⅰ)求表中空格內(nèi)的值;
(Ⅱ)根據(jù)殘差比較模型①,②的擬合效果,決定選擇哪個模型;
(Ⅲ)殘差大于的樣本點被認(rèn)為是異常數(shù)據(jù),應(yīng)剔除,剔除后對(Ⅱ)所選擇的模型重新建立回歸方程.
(結(jié)果保留到小數(shù)點后兩位)
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知f(A)=2,b=1,△ABC的面積為 ,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標(biāo)原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=n﹣5an﹣85,n∈N+ .
(1)求an .
(2)求數(shù)列{Sn}的通項公式,并求出n為何值時,Sn取得最小值?并說明理由.(參考數(shù)據(jù):lg 2≈0.3,lg 3≈0.48).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABOA′B′O′中,∠AOB=90°,側(cè)棱OO′⊥面OAB,OA=OB=OO′=2.若C為線段O′A的中點,在線段BB′上求一點E,使|EC|最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某顏料公司生產(chǎn)、兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過噸、噸、噸,如果產(chǎn)品的利潤為元/噸, 產(chǎn)品的利潤為元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤為( )
A. 元 B. 元 C. 元 D. 元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=sin(x﹣30°)+cos(x﹣60°),g(x)=2sin2 .
(1)若α為第一象限角且f(α)= ,求g(α)之值;
(2)求f(x﹣1080°)≥g(x)在[0,360°]內(nèi)的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com