【題目】已知圓Cx2y2+2x-4y+3=0.

(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.

(2)從圓C外一點P(x1y1)向該圓引一條切線,切點為MO為坐標原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標.

【答案】(1)y=(2±)xx+y+1=0x+y-3=0(2)

【解析】試題分析:(1)利用待定系數(shù)法給出切線的截距式方程,然后再利用圓心到切線的距離等于半徑列方程求系數(shù)即可;

(2)可先利用PM(PM可用P點到圓心的距離與半徑來表示)=PO,求出P點的軌跡(求出后是一條直線),然后再將求PM的最小值轉(zhuǎn)化為求直線上的點到原點的距離PO之最小值.

試題解析:

 (1)將圓C整理得(x+1)2+(y-2)2=2.

①當切線在兩坐標軸上的截距為零時,設切線方程為y=kx,

∴d=,即k2-4k-2=0,解得k=2±.∴y=(2±)x;

②當切線在兩坐標軸上的截距不為零時,設切線方程為x+y-a=0,

∴d=,即|a-1|=2,解得a=3或-1.∴x+y+1=0x+y-3=0.

綜上所述,所求切線方程為y=(2±)xx+y+1=0x+y-3=0.

(2)∵|PO|=|PM|,∴x+y=(x1+1)2+(y1-2)2-2,即2x1-4y1+3=0,即點P在直線l:2x-4y+3=0上.當|PM|取最小值時,即|OP|取得最小值,此時直線OP⊥l,∴直線OP的方程為:2x+y=0,解得方程組∴P點坐標為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】第十三屆全運會將2017年9月在天津舉行,組委會在2017年1月對參加接待服務的10名賓館經(jīng)理進行為期半月的培訓,培訓結(jié)束,組織了一次培訓結(jié)業(yè)測試,10人考試成績?nèi)缦拢M分100分):

75 84 65 90 88 95 78 85 98 82

(Ⅰ)以成績的十位為莖、個位為葉作出本次結(jié)業(yè)成績的莖葉圖,并計算平均成績與成績的中位數(shù) ;

(Ⅱ)從本次成績在85分以上(含85分)的學員中任選2人,2人成績都在90分以上(含90分)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐S ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,且點PAD的中點,點QSB的中點.

(1)求證:CD⊥平面SAD

(2)求證:PQ∥平面SCD

(3)若SASD,點MBC的中點,在棱SC上是否存在點N,使得平面DMN⊥平面ABCD?若存在,請說明其位置,并加以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,一個動圓截直線所得的弦長分別為8,4.

(1)求動圓圓心的軌跡方程;

(2)在軌跡上是否存在這樣的點:它到點的距離等于到點的距離?若存在,求出這樣的點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)函數(shù),若的極值點,求的值并討論的單調(diào)性;

(2)函數(shù)有兩個不同的極值點,其極小值為為,試比較的大小關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,A、B兩點都在河的對岸(不可到達),為了測量A、B兩點間的距離,選取一條基線CD,A、B、C、D在一平面內(nèi).測得:CD=200m,∠ADB=∠ACB=30°,∠CBD=60°,則AB=(

A. m
B.200 m
C.100 m
D.數(shù)據(jù)不夠,無法計算

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 <β<α< ,cos(α﹣β)= ,sin(α+β)=﹣ ,則sinα+cosα的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F2,線段OF1OF2的中點分別為B1,B2,且△AB1B2是面積為1的直角三角形.

(1)求該橢圓的離心率和標準方程;

(2)點M為該橢圓上任意一點,求|MA|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(1, ), =(sinx,cosx),設函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)設銳角△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,若c= ,cosB= ,且f(C)= ,求b.

查看答案和解析>>

同步練習冊答案