【題目】已知函數(shù)

(1)函數(shù),若的極值點(diǎn),求的值并討論的單調(diào)性;

(2)函數(shù)有兩個(gè)不同的極值點(diǎn),其極小值為為,試比較的大小關(guān)系,并說明理由.

【答案】(1),在單調(diào)遞減,在單調(diào)遞增(2)

【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),根據(jù)解出的值,從而確定的表達(dá)式,進(jìn)而求出單調(diào)區(qū)間;(2)對求導(dǎo), 有兩個(gè)不同的極值點(diǎn),即方程有兩個(gè)不同的實(shí)根,運(yùn)用判別式和韋達(dá)定理,可得到,列表求出的單調(diào)區(qū)間和最值,即可得出,再通過構(gòu)造,運(yùn)用導(dǎo)數(shù)可知函數(shù)單調(diào)遞減,從而得出

試題解析:(1) ,

,

因?yàn)?/span>的極值點(diǎn),所以,得, ,

此時(shí) , ,

當(dāng)時(shí), ;當(dāng)時(shí),

所以單調(diào)遞減,在單調(diào)遞增.

(2) ,

,

因?yàn)?/span>有兩個(gè)不同的極值點(diǎn),所以有兩個(gè)不同的實(shí)根,設(shè)此兩根為, ,且

,即,解得

的變化情況如下表:

由表可知 ,

因?yàn)?/span>,所以代入上式得:

,所以,

因?yàn)?/span>,且,所以

,則,

當(dāng)時(shí), ,即單調(diào)遞減,

所以當(dāng)時(shí),有,

點(diǎn)睛:本題考查導(dǎo)數(shù)的綜合應(yīng)用求單調(diào)性和極值,考查函數(shù)的單調(diào)性及運(yùn)用,極值點(diǎn)的個(gè)數(shù)與方程根的關(guān)系,屬于中檔題.極值點(diǎn)的個(gè)數(shù)問題經(jīng)常與導(dǎo)函數(shù)在定義域內(nèi)的方程根個(gè)數(shù)相互轉(zhuǎn)化,一元二次方程在有兩個(gè)不同的實(shí)根,等價(jià)轉(zhuǎn)化為判別式大于,韋達(dá)定理寫出兩根和與積,分別大于即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在貴陽市創(chuàng)建全國文明城市工作驗(yàn)收時(shí)國家文明委有關(guān)部門對高二年級6名學(xué)生進(jìn)行問卷調(diào)查,6人得分情況如下:5,6,7,8,9,10.把這6名學(xué)生的得分看成一個(gè)總體.如果用簡單隨機(jī)抽樣方法從這6名學(xué)生中抽取2名,他們的得分組成一個(gè)樣本,則該樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5的概率為(  )

A. B.; C.; D..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a2= ,且an+1= (n=2,3,4…).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:對一切n∈N* , 有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),若函數(shù)是自然對數(shù)的底數(shù))上有兩個(gè)零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計(jì)該企業(yè)的職工對該部門評分不低于80的概率;

(2)從評分在的受訪職工中,隨機(jī)抽取2人,求此2人評分都在的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2y2+2x-4y+3=0.

(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.

(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為MO為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線與直線垂直.

(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;

(2)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,定圓C的半徑為4,A為圓C上的一個(gè)定點(diǎn),B為圓C上的動點(diǎn),若點(diǎn)A,B,C不共線,且 對任意的t∈(0,+∞)恒成立,則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n名同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在[10,50)(單位:元),其中支出在[30,50)(單位:元)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為(  )

A. 100 B. 120 C. 130 D. 390

查看答案和解析>>

同步練習(xí)冊答案