【題目】學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n名同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在[10,50)(單位:元),其中支出在[30,50)(單位:元)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為( )
A. 100 B. 120 C. 130 D. 390
【答案】A
【解析】試題分析:根據(jù)小矩形的面積之和,算出位于10~30的2組數(shù)的頻率之和為0.33,從而得到位于30~50的數(shù)據(jù)的頻率之和為1﹣0.33=0.67,再由頻率計(jì)算公式即可算出樣本容量n的值.
解:∵位于10~20、20~30的小矩形的面積分別為
S1=0.01×10=0.1,S2=0.023×10=0.23,
∴位于10~20、20~30的據(jù)的頻率分別為0.1、0.23
可得位于10~30的前3組數(shù)的頻率之和為0.1+0.23=0.33
由此可得位于30~50數(shù)據(jù)的頻率之和為1﹣0.33=0.67
∵支出在[30,50)的同學(xué)有67人,即位于30~50的頻數(shù)為67,
∴根據(jù)頻率計(jì)算公式,可得=0.67,解之得n=100
故選:A
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)函數(shù),若是的極值點(diǎn),求的值并討論的單調(diào)性;
(2)函數(shù)有兩個(gè)不同的極值點(diǎn),其極小值為為,試比較與的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵市民節(jié)約用水,實(shí)行“階梯式”水價(jià),將該市每戶居民的月用水量劃分為三檔:月用水量不超過4噸的部分按2元/噸收費(fèi),超過4噸但不超過8噸的部分按4元/噸收費(fèi),超過8噸的部分按8元/噸收費(fèi).
(1)求居民月用水量費(fèi)用(單位:元)關(guān)于月用電量(單位:噸)的函數(shù)解析式;
(2)為了了解居民的用水情況,通過抽樣,獲得今年3月份100戶居民每戶的用水量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年3月份用水費(fèi)用不超過16元的占66%,求的值;
(3)在滿足條件(2)的條件下,若以這100戶居民用水量的頻率代替該月全市居民用戶用水量的概率.且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替.記為該市居民用戶3月份的用水費(fèi)用,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(理科)在平面直角坐標(biāo)系中, 是橢圓上的一個(gè)動點(diǎn),點(diǎn),則的最大值為( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中且,若, 在處切線的斜率為.
(1)求函數(shù)的解析式及其單調(diào)區(qū)間;
(2)若實(shí)數(shù)滿足,且對于任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1, ), =(sinx,cosx),設(shè)函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)設(shè)銳角△ABC的三個(gè)內(nèi)角A,B,C的對邊分別為a,b,c,若c= ,cosB= ,且f(C)= ,求b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解2013年某校高三學(xué)生的視力情況,隨機(jī)抽查了一部分學(xué)生視力,將調(diào)查結(jié)果分組,分組區(qū)間為,,… ,經(jīng)過數(shù)據(jù)處理,得到如右頻率分布表:
(1)求頻率分布表中未知量的值;
(2)從樣本中視力在和的所有同學(xué)中隨機(jī)抽取兩人,求兩人的視力差的絕對值低于0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某成衣批發(fā)店為了對一款成衣進(jìn)行合理定價(jià),將該款成衣按事先擬定的價(jià)格進(jìn)行試銷,得到了如下數(shù)據(jù):
批發(fā)單價(jià)x(元) | 80 | 82 | 84 | 86 | 88 | 90 |
銷售量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程 ,其中
(2)預(yù)測批發(fā)單價(jià)定為85元時(shí),銷售量大概是多少件?
(3)假設(shè)在今后的銷售中,銷售量與批發(fā)單價(jià)仍然服從(1)中的關(guān)系,且該款成衣的成本價(jià)為40元/件,為使該成衣批發(fā)店在該款成衣上獲得更大利潤,該款成衣單價(jià)大約定為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若對任意恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com