【題目】為了了解2013年某校高三學(xué)生的視力情況,隨機(jī)抽查了一部分學(xué)生視力,將調(diào)查結(jié)果分組,分組區(qū)間為,,… ,經(jīng)過數(shù)據(jù)處理,得到如右頻率分布表:

(1)求頻率分布表中未知量的值;

(2)從樣本中視力在的所有同學(xué)中隨機(jī)抽取兩人,求兩人的視力差的絕對(duì)值低于0.5的概率.

【答案】(1)0.28;(2)

【解析】試題分析:(1)根據(jù)題意,由一組頻數(shù)為,頻率為,可得,解可得的值進(jìn)而由,可得的值由頻數(shù)之和為,可得的值由頻率、頻數(shù)的關(guān)系可得的值;(2)設(shè)樣本視力在人為,樣本視力在人為;由題意列舉從人中任取兩人的基本事件空間,可得其基本事件的數(shù)目設(shè)事件表示抽取的兩人的視力差的絕對(duì)值低于”,可得基本事件數(shù)目,由等可能事件的概率,計(jì)算可得答案.

試題解析:(1)由表可知,樣本容量為,

,得,

;

,

設(shè)樣本視力在(3.9,4.2]的3人為,

在(5.1,5.4]的2人為

由題意從5人中任取兩人的基本事件如下:

,共有10個(gè)基本事件

設(shè)事件A表示“抽取的兩人的視力差的絕對(duì)值低于0.5”,

則事件A等價(jià)于“抽取兩人來自同一組”包含的基本事件有:

,共有4個(gè)基本事件

, 故抽取的兩人的視力差的絕對(duì)值

低于0.5的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線與直線垂直.

(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;

(2)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵(lì)市民節(jié)約用水,實(shí)行“階梯式”水價(jià),將該市每戶居民的月用水量劃分為三檔:月用水量不超過4噸的部分按2元/噸收費(fèi),超過4噸但不超過8噸的部分按4元/噸收費(fèi),超過8噸的部分按8元/噸收費(fèi).

(1)求居民月用水量費(fèi)用(單位:元)關(guān)于月用電量(單位:噸)的函數(shù)解析式;

(2)為了了解居民的用水情況,通過抽樣,獲得今年3月份100戶居民每戶的用水量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年3月份用水費(fèi)用不超過16元的占60%,求的值;

(3)若地區(qū)居民用水量平均值超過6噸,則說明該地區(qū)居民用水沒有節(jié)約意識(shí)在滿足(2)的條件下,請(qǐng)你估計(jì)市居民用水是否有節(jié)約意識(shí)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n名同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在[10,50)(單位:元),其中支出在[30,50)(單位:元)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為(  )

A. 100 B. 120 C. 130 D. 390

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求證:f(x)+f(1﹣x)= ;
(2)設(shè)數(shù)列{an}滿足an=f(0)+f( )+f( )+…+f( )+f(1),求an;
(3)設(shè)數(shù)列{an}的前項(xiàng)n和為Sn , 若Sn≥λan(n∈N*)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足 ,其中.

(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;

(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于恒成立,若存在,求出的最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)EF、G分別是正方體ABCDA1B1C1D1的棱AB、BC、B1C1的中點(diǎn),如圖所示,則下列命題中的真命題是________(寫出所有真命題的編號(hào)).

以正方體的頂點(diǎn)為頂點(diǎn)的三棱錐的四個(gè)面中最多只有三個(gè)面是直角三角形;

過點(diǎn)F、D1、G的截面是正方形;

點(diǎn)P在直線FG上運(yùn)動(dòng)時(shí),總有APDE

點(diǎn)Q在直線BC1上運(yùn)動(dòng)時(shí),三棱錐AD1QC的體積是定值;

點(diǎn)M是正方體的平面A1B1C1D1內(nèi)的到點(diǎn)DC1距離相等的點(diǎn),則點(diǎn)M的軌跡是一條線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題10分) 從3名男生和名女生中任選2人參加比賽。

①求所選2人都是男生的概率;

②求所選2人恰有1名女生的概率;

③求所選2人中至少有1名女生的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、C(4,0),半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓My軸截得的弦長(zhǎng)為 r.

(1)求圓M的方程;(2)當(dāng)r變化時(shí),是否存在定直線l與動(dòng)圓M均相切?如果存在,求出定直線l的方程;如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案