【題目】在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、C(4,0),半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓My軸截得的弦長(zhǎng)為 r.

(1)求圓M的方程;(2)當(dāng)r變化時(shí),是否存在定直線l與動(dòng)圓M均相切?如果存在,求出定直線l的方程;如果不存在,說(shuō)明理由.

【答案】(1) ;(2) 存在兩條直線y=3和4x+3y-9=0與動(dòng)圓M均相切.

【解析】試題分析:(1)根據(jù)圓心在弦的中垂線上求得線段AC的垂直平分線方程為y=2x+3,可知圓心在這條線上,設(shè)圓心為M(a,2a+3)再有垂徑定理構(gòu)造方程求解即可;(2)由直線和圓相切的性質(zhì)得到=r,圓心到直線的距離為半徑,再根據(jù)方程恒等得到

對(duì)應(yīng)系數(shù)相等即可;

(1)由題意C(0,-2),A(-4,0),

所以線段AC的垂直平分線方程為y=2x+3.

設(shè)M(a,2a+3)(a>0),則圓M的方程為(x-a)2+(y-2a-3)2=r2.

圓心M到y(tǒng)軸的距離d=a,由r2=d2,得a=.

所以圓M的方程為+(y-r-3)2=r2.

(2)假設(shè)存在定直線l與動(dòng)圓M均相切.當(dāng)定直線的斜率不存在時(shí),不合題意.

設(shè)直線l:y=kx+b,則=r對(duì)任意r>0恒成立.

,得r2+(k-2)(b-3)r+(b-3)2=(1+k2)r2.

所以解得

所以存在兩條直線y=3和4x+3y-9=0與動(dòng)圓M均相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解2013年某校高三學(xué)生的視力情況,隨機(jī)抽查了一部分學(xué)生視力,將調(diào)查結(jié)果分組,分組區(qū)間為,… ,經(jīng)過數(shù)據(jù)處理,得到如右頻率分布表:

(1)求頻率分布表中未知量的值;

(2)從樣本中視力在的所有同學(xué)中隨機(jī)抽取兩人,求兩人的視力差的絕對(duì)值低于0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)擬建立一個(gè)藝術(shù)博物館,采取競(jìng)標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進(jìn)入最后的招標(biāo).現(xiàn)從建筑設(shè)計(jì)院聘請(qǐng)專家設(shè)計(jì)了一個(gè)招標(biāo)方案:兩家公司從個(gè)招標(biāo)問題中隨機(jī)抽取個(gè)問題,已知這個(gè)招標(biāo)問題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對(duì)每題的回答都是相互獨(dú)立,互不影響的.

(1)求甲、乙兩家公司共答對(duì)道題目的概率;

(2)請(qǐng)從期望和方差的角度分析,甲、乙兩家哪家公司競(jìng)標(biāo)成功的可能性更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),若對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,各棱長(zhǎng)均為6, 分別是側(cè)棱、上的點(diǎn),且.

(1)在上是否存在一點(diǎn),使得平面?證明你的結(jié)論;

2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書店銷售剛剛上市的某知名品牌的高三數(shù)學(xué)單元卷,按事先擬定的價(jià)格進(jìn)行5天試銷,每種單價(jià)試銷1天,得到如表數(shù)據(jù):

單價(jià)x(元)

18

19

20

21

22

銷量y(冊(cè))

61

56

50

48

45

(1)求試銷5天的銷量的方差和y對(duì)x的回歸直線方程;

(2)預(yù)計(jì)今后的銷售中,銷量與單價(jià)服從(1)中的回歸方程,已知每?jī)?cè)單元卷的成本是14元,

為了獲得最大利潤(rùn),該單元卷的單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年被業(yè)界稱為(虛擬現(xiàn)實(shí)技術(shù))元年,未來(lái)技術(shù)將給教育、醫(yī)療、娛樂、商業(yè)、交通旅游等多領(lǐng)域帶來(lái)極大改變,某教育設(shè)備生產(chǎn)企業(yè)有甲、乙兩類產(chǎn)品,其中生產(chǎn)一件甲產(chǎn)品需團(tuán)隊(duì)投入15天時(shí)間, 團(tuán)隊(duì)投入20天時(shí)間,總費(fèi)用10萬(wàn)元,甲產(chǎn)品售價(jià)為15萬(wàn)元/件;生產(chǎn)一件乙產(chǎn)品需團(tuán)隊(duì)投入20天時(shí)間, 團(tuán)隊(duì)投入16天時(shí)間,總費(fèi)用15萬(wàn)元,乙產(chǎn)品售價(jià)為25萬(wàn)元/件, 、兩個(gè)團(tuán)隊(duì)分別獨(dú)立運(yùn)作.現(xiàn)某客戶欲以不超過200萬(wàn)元訂購(gòu)該企業(yè)甲、乙兩類產(chǎn)品,要求每類產(chǎn)品至少各3件,在期限180天內(nèi),為使企業(yè)總效益最佳,則最后交付的甲、乙兩類產(chǎn)品數(shù)之和為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過點(diǎn), ,并且直線平分圓.

(1)求圓的方程;

(2)若直線與圓交于兩點(diǎn),是否存在直線,使得為坐標(biāo)原點(diǎn)),若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點(diǎn),直線交與 ,求 .

查看答案和解析>>

同步練習(xí)冊(cè)答案