【題目】對某產(chǎn)品1到6月份銷售量及其價格進(jìn)行調(diào)查,其售價x和銷售量y之間的一組數(shù)據(jù)如下表所示:
月份i | 1 | 2 | 3 | 4 | 5 | 6 |
單價(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差不超過0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問所得到的回歸直線方程是否理想?
(3)預(yù)計在今后的銷售中,銷售量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是2.5元/件,為獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家質(zhì)量監(jiān)督檢驗檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗》國家標(biāo)準(zhǔn),新標(biāo)準(zhǔn)規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經(jīng)過反復(fù)試驗,喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”如下:
該函數(shù)模型如下:
根據(jù)上述條件,回答以下問題:
(1)試計算喝1瓶啤酒后多少小時血液中的酒精含量達(dá)到最大值?最大值是多少?
(2)試計算喝1瓶啤酒后多少小時后才可以駕車?(時間以整小時計算)
(參數(shù)數(shù)據(jù): , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鮮奶店每天購進(jìn)30瓶鮮牛奶,且當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:瓶,n∈N)的函數(shù)解析式(n∈N).鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶)繪制出如下的柱形圖(例如:日需求量為25瓶時,頻數(shù)為5):
(1)求這100天的日利潤(單位:元)的平均數(shù);
(2)以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于100元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,解不等式;
(2)若,不等式恒成立,求的取值范圍;
(3)若關(guān)于的方程的解集中恰好有一個元素,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,是棱的中點(diǎn),是側(cè)面內(nèi)的動點(diǎn),且平面,則與平面所成角的正切值構(gòu)成的集合是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,點(diǎn)在橢圓C上,O為坐標(biāo)原點(diǎn).
Ⅰ求橢圓C的方程;
Ⅱ設(shè)動直線l與橢圓C有且僅有一個公共點(diǎn),且l與圓的相交于不在坐標(biāo)軸上的兩點(diǎn),,記直線,的斜率分別為,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價x(元) | 4 | 5 | 6 | 7 | 8 |
產(chǎn)品銷量y(件) | q | 85 | 82 | 80 | 75 |
已知
(1)求出q的值;
(2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程;
(3)假設(shè)試銷單價為10元,試估計該產(chǎn)品的銷量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(1)將表示為的函數(shù),求出該函數(shù)表達(dá)式;
(2)根據(jù)直方圖估計利潤不少于57萬元的概率;
(3)根據(jù)頻率分布直方圖,估計一個銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點(diǎn)后一位).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com