有一塊邊長為4米的正方形鋼板,現(xiàn)對其進行切割,焊接成一個長方體無蓋容器(切、焊損耗忽略不計),有人用數(shù)學知識作了如下設計:在鋼板的四個角處各切去一個小正方形,剩余部分圍成長方體。
(Ⅰ)求這種切割、焊接而成的長方體的最大容積.
(Ⅱ)請問:能重新設計,使所得長方體的容器的容積嗎?若能、給出你的一種設計方案。
(Ⅰ)(m3);(Ⅱ)能(參考解析)
解析試題分析:(Ⅰ)根據題意可得假設每個小正方形的邊長為x.則通過折疊可得一個無蓋的正方體.所以可以求出正方體的體積的表達.通過求導可求得體積的最大值.
(Ⅱ)本小題的設計較困難.通過對比和體積公式的應用可以假設出較多的方案.本小題的設計方案具有一定的技巧性.
試題解析:(1)設切去的小正方形邊長為x.則.所以.所以當時. .當時. .所以當時. (m3).
(2)能.如圖所示.先在在正方形一邊的兩個角出各切下一個邊長為1米的小正方形.再將這兩個小正方形焊接在另一邊的中間.然后焊接成長方形容器.此時. .
考點:1.正方體的體積的求法.2.導數(shù)求最值.3.創(chuàng)新思維的構造.
科目:高中數(shù)學 來源: 題型:解答題
某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關于的函數(shù)關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求關于的函數(shù)關系式,并求出為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某種商品原來每件售價為25元,年銷售8萬件.
(1)據市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了擴大該商品的影響力,提高年銷售量.公司決定明年對該商品進行全面技術革新和營銷策略改革,并提高定價到元.公司擬投入萬元作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當該商品明年的銷售量至少應達到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com