已知函數(shù)
(1)求函數(shù)的定義域;
(2)求函數(shù)的零點;
(3)若函數(shù)的最小值為-4,求a的值.
(1)函數(shù)的定義域為;(2的零點是;(3).
解析試題分析:(1)函數(shù)的定義域是使函數(shù)有意義的取值范圍,而對數(shù)有意義則真數(shù)大于0,即;
(2)函數(shù)的零點等價于方程的根,可先利用對數(shù)運算性質(zhì)進(jìn)行化簡,即
,要注意定義域的范圍,檢驗解得的根是否在定義域內(nèi);
(3)可利用函數(shù)的單調(diào)性求最值來解參數(shù),由(2)可知,令,在單調(diào)遞減,則在取最大值時函數(shù)的最小值取-4,而,當(dāng)時,則,.
試題解析:21.( 普通班)
(1)要使函數(shù)有意義,則有 解之得,
所以函數(shù)的定義域為.
(2)函數(shù)可化為
由,得, 即,,
,的零點是.
21.(聯(lián)辦班)
(1)要使函數(shù)有意義:則有,解之得: ,
所以函數(shù)的定義域為:.
(2)函數(shù)可化為
由,得,即,,
,的零點是.
(3)
.
,,
.由,得,.
考點:1、對數(shù)函數(shù)的定義域;2對數(shù)的運算性質(zhì);3、函數(shù)的零點;4、對數(shù)方程的解法;5、復(fù)合函數(shù)的最值問題;6、二次函數(shù)的最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
為加快旅游業(yè)的發(fā)展,新余市2013年面向國內(nèi)發(fā)行總量為200萬張的“仙女湖之旅”優(yōu)惠卡,向省外人士發(fā)行的是金卡,向省內(nèi)人士發(fā)行的是銀卡.某旅游公司組織了一個有36名游客的旅游團(tuán)到新余仙女湖旅游,其中是省外游客,其余是省內(nèi)游客.在省外游客中有持金卡,在省內(nèi)游客中有持銀卡.(1)在該團(tuán)中隨機(jī)采訪2名游客,求恰有1人持銀卡的概率;
(2)在該團(tuán)中隨機(jī)采訪2名游客,求其中持金卡與持銀卡人數(shù)相等概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)滿足.
(1)求的解析式;
(2)對于(1)中得到的函數(shù),試判斷是否存在,使在區(qū)間上的值域為?若存在,求出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,其中.函數(shù)在區(qū)間上有最大值為4,設(shè).
(1)求實數(shù)的值;
(2)若不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有一塊邊長為4米的正方形鋼板,現(xiàn)對其進(jìn)行切割,焊接成一個長方體無蓋容器(切、焊損耗忽略不計),有人用數(shù)學(xué)知識作了如下設(shè)計:在鋼板的四個角處各切去一個小正方形,剩余部分圍成長方體。
(Ⅰ)求這種切割、焊接而成的長方體的最大容積.
(Ⅱ)請問:能重新設(shè)計,使所得長方體的容器的容積嗎?若能、給出你的一種設(shè)計方案。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某種商品原來每件售價為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了擴(kuò)大該商品的影響力,提高年銷售量.公司決定明年對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價到元.公司擬投入萬元作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當(dāng)該商品明年的銷售量至少應(yīng)達(dá)到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某企業(yè)生產(chǎn)某種商品噸,此時所需生產(chǎn)費用為()萬元,當(dāng)出售這種商品時,每噸價格為萬元,這里(為常數(shù),)
(1)為了使這種商品的生產(chǎn)費用平均每噸最低,那么這種商品的產(chǎn)量應(yīng)為多少噸?
(2)如果生產(chǎn)出來的商品能全部賣完,當(dāng)產(chǎn)量是120噸時企業(yè)利潤最大,此時出售價格是每噸160萬元,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中是實數(shù),設(shè)為該函數(shù)的圖象上的兩點,且.
⑴指出函數(shù)的單調(diào)區(qū)間;
⑵若函數(shù)的圖象在點處的切線互相垂直,且,求的最小值;
⑶若函數(shù)的圖象在點處的切線重合,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某種汽車的購車費用是10萬元,每年使用的保險費、養(yǎng)路費、汽油費約為萬元,年維修費用第一年是萬元,第二年是萬元,第三年是萬元,…,以后逐年遞增萬元汽車的購車費用、每年使用的保險費、養(yǎng)路費、汽油費、維修費用的和平均攤到每一年的費用叫做年平均費用.設(shè)這種汽車使用年的維修費用的和為,年平均費用為.
(1)求出函數(shù),的解析式;
(2)這種汽車使用多少年時,它的年平均費用最小?最小值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com