下面四個(gè)命題:
①把函數(shù)y=3sin(2x+數(shù)學(xué)公式)的圖象向右平移數(shù)學(xué)公式個(gè)單位,得到y(tǒng)=3sin2x的圖象;
②函數(shù)f(x)=ax2-lnx的圖象在x=1處的切線平行于直線y=x,則(數(shù)學(xué)公式)是f(x)的單調(diào)遞增區(qū)間;
③正方體的內(nèi)切球與其外接球的表面積之比為1:3;
④“a=2”是“直線ax+2y=0平行于直線x+y=1”的充分不必要條件.
其中所有正確命題的序號(hào)為________.

②③
分析:①利用三角函數(shù)的平移變換即可判斷出;
②利用導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可判斷出;
③利用正方體的內(nèi)切球、外接球的半徑與正方體的半徑之間的關(guān)系即可得出;
④利用斜率存在的兩條直線平行的充要條件即可得出.
解答:①把函數(shù)y=3sin(2x+)的圖象向右平移個(gè)單位得到y(tǒng)=3=的圖象,而得不到函數(shù)y=3sin2x的圖象,因此不正確;
②∵函數(shù)f(x)=ax2-lnx的圖象在x=1處的切線平行于直線y=x,∴,解得a=1,
=,(x>0),令f(x)=0,解得x=,當(dāng)時(shí),f(x)>0,∴()是f(x)的單調(diào)遞增區(qū)間,因此正確;
③不妨設(shè)此正方體的棱長為2,則其內(nèi)切球與外接球的半徑分別為1,,故其內(nèi)切球與其外接球的表面積之比==,因此正確;
④∵“a=2”?“直線ax+2y=0平行于直線x+y=1”,∴“a=2”是“直線ax+2y=0平行于直線x+y=1”的充分必要條件.故④不正確.
綜上可知:只有②③正確.
故答案為②③.
點(diǎn)評(píng):本題綜合考查了三角函數(shù)的平移變換、導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、正方體的內(nèi)切球、外接球的半徑與正方體的半徑之間的關(guān)系及斜率存在的兩條直線平行的充要條件,熟練以上知識(shí)與方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面有四個(gè)命題:
①終邊在y軸上的角的集合是{α|α=
2
,k∈Z
};
②在同一坐標(biāo)系中,函數(shù)y=sinx和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);
③把y=3sin(2x+
π
3
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象;
④函數(shù)y=sin(x-
π
2
)
在[0,π]上是減函數(shù).
其中真命題的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個(gè)命題:
①奇函數(shù)的圖象一定過原點(diǎn);
②函數(shù)y=
1-x2
|x+2|-2
是奇函數(shù);
③奇函數(shù)f(x)在[a,b]上為增函數(shù),則函數(shù)f(x)在[-b,-a]上為減函數(shù);
④定義在R上的函數(shù)y=f(x),則函數(shù)y=f(x-1)與y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱;
其中正確命題的序號(hào)是
②④
②④
(把所有正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臨沂一模)下面四個(gè)命題:
①把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
3
個(gè)單位,得到y(tǒng)=3sin2x的圖象;
②函數(shù)f(x)=ax2-lnx的圖象在x=1處的切線平行于直線y=x,則(
2
2
,+∞
)是f(x)的單調(diào)遞增區(qū)間;
③正方體的內(nèi)切球與其外接球的表面積之比為1:3;
④“a=2”是“直線ax+2y=0平行于直線x+y=1”的充分不必要條件.
其中所有正確命題的序號(hào)為
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個(gè)命題:①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
3
個(gè)單位,得到y(tǒng)=3sin2x的圖象;
③函數(shù)f(x)=ax2-lnx的圖象在x=1處的切線平行于直線y=x,則(
2
2
,+∞)是f(x)的單調(diào)遞增區(qū)間;
④正方體的內(nèi)切球與其外接球的表面積之比為1:3;
其中所有正確命題的序號(hào)為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆吉林省四校聯(lián)合體高三第一次診斷性測(cè)試?yán)砜茢?shù)學(xué)試卷(帶解析) 題型:填空題

下面四個(gè)命題:
①把函數(shù)的圖象向右平移個(gè)單位,得到的圖象;
②函數(shù)的圖象在x=1處的切線平行于直線y=x,則是f(x)的單調(diào)遞增區(qū)間;
③正方體的內(nèi)切球與其外接球的表面積之比為1∶3;
④“a=2”是“直線ax+2y=0平行于直線x+y=1”的充分不必要條件。
其中所有正確命題的序號(hào)為       

查看答案和解析>>

同步練習(xí)冊(cè)答案