【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值,若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.

表1:甲套設(shè)備的樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數(shù)

1

5

18

19

6

1

圖1:乙套設(shè)備的樣本的頻率分布直方圖

(Ⅰ)將頻率視為概率. 若乙套設(shè)備生產(chǎn)了5000件產(chǎn)品,則其中的不合格品約有多少件;

(Ⅱ)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);

甲套設(shè)備

乙套設(shè)備

合計

合格品

不合格品

合計

(Ⅲ)根據(jù)表1和圖1,對兩套設(shè)備的優(yōu)劣進行比較.

附:

.

【答案】(Ⅰ)700件;(Ⅱ)見解析;(Ⅲ)見解析.

【解析】試題分析(Ⅰ)求出乙套設(shè)備生產(chǎn)的不合格品率,即可得出結(jié)論;(Ⅱ)根據(jù)表1和圖1可得到列聯(lián)表,然后利用公式,求出結(jié)果判斷即可;(Ⅲ)由表1和圖1可知甲乙的合格品率,甲套設(shè)備生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值主要集中在[105,115)之間,乙套設(shè)備生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值與甲套設(shè)備相比較為分散,即可得出結(jié)論.

試題解析:(Ⅰ)由圖1知,乙套設(shè)備生產(chǎn)的不合格品率約為

∴乙套設(shè)備生產(chǎn)的5000件產(chǎn)品中不合格品約為(件).

(Ⅱ)由表1和圖1得到列聯(lián)表

甲套設(shè)備

乙套設(shè)備

合計

合格品

48

43

91

不合格品

2

7

9

合計

50

50

100

將列聯(lián)表中的數(shù)據(jù)代入公式計算得

.

∴有90%的把握認為產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān).

(Ⅲ)由表1和圖1知,甲套設(shè)備生產(chǎn)的合格品的概率約為,乙套設(shè)備生產(chǎn)的合格品的概率約為,甲套設(shè)備生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值主要集中在[105,115)之間,乙套設(shè)備生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值與甲套設(shè)備相比較為分散.因此,可以認為甲套設(shè)備生產(chǎn)的合格品的概率更高,且質(zhì)量指標(biāo)值更穩(wěn)定,從而甲套設(shè)備優(yōu)于乙套設(shè)備.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在平面直角坐標(biāo)系,已知曲線為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為。

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過點且與直線平行的直線, 兩點,求點, 的距離之積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,

1求函數(shù)的最小正周期及取得最大值時對應(yīng)的x的值;

2在銳角三角形ABC中,角A、B、C的對邊為a、b、c,若,求三角形ABC面積的最大值并說明此時該三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)求證:

(Ⅲ)判斷曲線是否位于軸下方,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在幾何體中,四邊形ABCD為菱形,對角線ACBD的交點為O,四邊形DCEF為梯形,EFDCFDFB.

()DC2EF求證:OE∥平面ADF;

()求證:平面AFC⊥平面ABCD

()ABFB2,AF3BCD60°,AF與平面ABCD所成角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩個學(xué)校高三年級分別有1100人,1000人,為了了解兩個學(xué)校全體高三年級學(xué)生在該地區(qū)二模考試的數(shù)學(xué)成績清況,采用分層抽樣方法從兩個學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計表如下:

甲校:

乙校:

(1)計算的值;

(2)若規(guī)定考試成績在內(nèi)為優(yōu)秀,請根據(jù)樣本估計乙校數(shù)學(xué)成績的優(yōu)秀率;

(3)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認為兩個學(xué)校的數(shù)學(xué)成績有差異.

附: ; .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

)求證:當(dāng)時,

)若函數(shù)在(1,+∞)上有唯一零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為R的函數(shù)f(x),若f(x)在(-∞,0)和(0,+∞)上均有零點,則稱函數(shù)f(x)為“含界點函數(shù)”,則下列四個函數(shù)中,不是“含界點函數(shù)”的是(  )

A. f(x)=x2bx-1(b∈R) B. f(x)=2-|x-1|

C. f(x)=2xx2 D. f(x)=x-sin x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,如果存在正實數(shù),使得對任意,都有,且恒成立,則稱函數(shù)上的“的型增函數(shù)”,已知是定義在上的奇函數(shù),且在時, ,若上的“2017的型增函數(shù)”,則實數(shù)的取值范圍是__________

查看答案和解析>>

同步練習(xí)冊答案