【題目】如圖,四棱錐P—ABCD中,ABCD為矩形,△PAD為等腰直角三角形,
∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點.
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD;
(3)求四棱錐P—ABCD的體積.
【答案】(1)見解析(2)見解析(3)
【解析】試題分析: (1)確定出EF∥AP,運用判斷定理可證明.(2)抓住CD⊥AD,CD⊥面PAD,運用面面垂直的定理可證明.(3)確定PO為四棱錐P﹣ABCD的高.
求出PO=1,運用體積公式V=PO×AB×AD求解即可.
試題解析:
(1)如圖,連接AC,∵ABCD為矩形且F是BD的中點,∴AC必經(jīng)過F,又E是PC的中點,所以,EF∥AP
∵EF在面PAD外,PA在面內(nèi),∴EF∥面PAD
(2)∵面PAD⊥面ABCD,CD⊥AD,面PAD面ABCD=AD,∴CD⊥面PAD,又AP面PAD,∴AP⊥CD又∵AP⊥PD,PD和CD是相交直線且在面PDC內(nèi),∴AP⊥面PCD,又AD面PAD,所以,面PDC⊥面PAD
(3)取AD中點為O,連接PO,因為面PAD⊥面ABCD及△PAD為等腰直角三角形,所以PO⊥面ABCD,即PO為四棱錐P—ABCD的高,∵AD=2,∴PO=1,
所以四棱錐P—ABCD的體積
科目:高中數(shù)學 來源: 題型:
【題目】已知產(chǎn)品的質(zhì)量采用綜合指標值進行衡量,為一等品;為二等品;為三等品.我市一家工廠準備購進新型設備以提高生產(chǎn)產(chǎn)品的效益,在某供應商提供的設備中任選一個試用,生產(chǎn)了一批產(chǎn)品并統(tǒng)計相關數(shù)據(jù),得到頻率分布直方圖:
(1)估計該新型設備生產(chǎn)的產(chǎn)品為二等品的概率;
(2)根據(jù)這家工廠的記錄,產(chǎn)品各等次的銷售率(某等次產(chǎn)品銷量與其對應產(chǎn)量的比值)及單件售價情況如下:
一等品 | 二等品 | 三等品 | |
銷售率 | |||
單件售價 | 元 | 元 | 元 |
根據(jù)以往的銷售方案,未售出的產(chǎn)品統(tǒng)一按原售價的全部處理完.已知該工廠認購該新型設備的前提條件是,該新型設備生產(chǎn)的產(chǎn)品同時滿足下列兩個條件:
①綜合指標值的平均數(shù)不小于(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
②單件平均利潤值不低于.
若該新型設備生產(chǎn)的產(chǎn)品的成本為元/件,月產(chǎn)量為件,在銷售方案不變的情況下,根據(jù)以上圖表數(shù)據(jù),分析該新型設備是否達到該工廠的認購條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)求f(x)的極值;
(2)當0<x<e時,求證:f(e+x)>f(e﹣x);
(3)設函數(shù)f(x)圖象與直線y=m的兩交點分別為A(x1 , f(x1)、B(x2 , f(x2)),中點橫坐標為x0 , 證明:f'(x0)<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x的二次函數(shù)f(x)=x2+(2t-1)x+1-2t.
(1)求證:對于任意t∈R,方程f(x)=1必有實數(shù)根;
(2)若<t<,求證:方程f(x)=0在區(qū)間(-1,0)及內(nèi)各有一個實數(shù)根.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= sinωx+cosωx(ω>0)的圖象與直線y=﹣2的兩個相鄰公共點之間的距離等于π,則f(x)的單調(diào)遞減區(qū)間是( )
A.[kπ+ ,kπ+ ],k∈z
B.[kπ﹣ ,kπ+ ],k∈z
C.[2kπ+ ,2kπ+ ],k∈z
D.[2kπ﹣ ,2kπ+ ],k∈z
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】秦九韶是我國南宋時代的數(shù)學家,其代表作《數(shù)書九章》是我國13世紀數(shù)學成就的代表之一,秦九韶利用其多項式算法,給出了求高次代數(shù)方程的完整算法,這一成就比西方同樣的算法早五六百年,如圖是該算法求函數(shù)f(x)=x3+x+1零點的程序框圖,若輸入x=﹣1,c=1,d=0.1,則輸出的x的值為( )
A.﹣0.6
B.﹣0.69
C.﹣0.7
D.﹣0.71
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,點與關于坐標原點對稱,直線垂直于軸,垂足為,與拋物線交于不同的兩點, ,且.
(1)求點的橫坐標.
(2)若以, 為焦點的橢圓過點
(ⅰ)求橢圓的標準方程;
(ⅱ)過點作直線與橢圓交于, 兩點,設,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點A(2,4).
(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B,C兩點,且BC=OA,
求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)已知:“直線與圓相交”; :“有一正根和一負根”.若為真, 為真,求的取值范圍.
(2)已知橢圓: 與圓: ,雙曲線與橢圓有相同的焦點,它的兩條漸近線恰好與圓相切.求雙曲線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com