函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,其中A>0,ω>0,|φ|<
π
2

(1)求出A、ω、φ的值;
(2)由函數(shù)g(x)=cosx經(jīng)過平移變換可否得到函數(shù)f(x)的圖象?若能,平移的最短距離是多少個單位?否則,說明理由.
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值.
(2)利用誘導(dǎo)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:(1)由函數(shù)的圖象可得A=1,
T
2
=
π
ω
=
6
+
π
6
=π,∴ω=1.
再根據(jù)五點法作圖可得1×(-
π
6
)+φ=0,∴φ=
π
6

(2)由(1)可得函數(shù)f(x)=sin(x+
π
6
)=cos(x-
π
3
),
顯然能由函數(shù)g(x)=cosx經(jīng)過平移變換得到函數(shù)f(x)的圖象,
故把函數(shù)g(x)=cosx的圖象向右最少平移
π
3
個單位,可得f(x)的圖象,
故平移的最短距離是
π
3
個單位.
點評:本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,誘導(dǎo)公式的應(yīng)用,函數(shù)y=Acos(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓ρ=5cosθ-5
3
sinθ的圓心坐標(biāo)是(  )
A、(-5,-
3
B、(-5,
π
3
C、(5,
π
3
D、(-5,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過點A(2,0),傾斜角為
π
3
,曲線C的極坐標(biāo)方程為:ρ2cos2θ=1.
(1)求直線l的參數(shù)方程及曲線C的普通方程;
(2)求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx-ϕ)的最小正周期為π,其中ω>0,ϕ∈(0,π),且函數(shù)f(x)的圖象過點(
π
3
,2).
(1)求ω,ϕ的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(x0,y0)是坐標(biāo)平面上一動點,向量
a
=(x0,y0),向量
b
=(y0,2y0-x0),
(1)求證:當(dāng)點P在x軸上運動時,總有
a
b
;
(2)若P點運動時,總有
a
b
,求證:P點總在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知tanα=3,計算
4sinα-2cosα
5cosα+3sinα
 的值;
(2)已知f(α)=
sin(5π-α)•cos(α+
2
)•cos(π+α)
sin(α-
2
)•cos(α+
π
2
)•tan(α-3π)
化簡f(α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

延遲退休年齡的問題,近期引發(fā)社會的關(guān)注.人社部于2012年7月25日上午召開新聞發(fā)布會表示,我國延遲退休年齡將借鑒國外經(jīng)驗,擬對不同群體采取差別措施,并以“小步慢走”的方式實施.推遲退休年齡似乎是一種必然趨勢,然而反對的聲音也隨之而起.現(xiàn)對某市工薪階層關(guān)于“延遲退休年齡”的態(tài)度進行調(diào)查,隨機抽取了50人,他們月收入的頻數(shù)分布及對“延遲退休年齡”反對的人數(shù)
月收入(元)[1000,2000)[2000,3000)[3000,4000)[4000,5000)[5000,6000)[6000,7000)
頻數(shù)510151055
反對人數(shù)4812521
(1)由以上統(tǒng)計數(shù)據(jù)估算月收入高于4000的調(diào)查對象中,持反對態(tài)度的概率;
(2)若對月收入在[1000,2000),[4000,5000)的被調(diào)查對象中各隨機選取兩人進行跟蹤調(diào)查,記選中的4人中贊成“延遲退休年齡”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用0,1,2,3,4,5共6個數(shù)字,可以組成多少個
(1)沒有重復(fù)數(shù)字的六位奇數(shù)
(2)沒有重復(fù)數(shù)字的六位偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z,
.
z
為共軛復(fù)數(shù),且,(z+
.
z
2-3z
.
z
i=4-12i求z,
.
z
的值.

查看答案和解析>>

同步練習(xí)冊答案