【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
【答案】(1)見解析;(2)最大值f(4)=,最小值f(1)=.
【解析】
試題分析:(1)用定義法證明單調(diào)性的步驟:定義域上任取,計(jì)算的正負(fù),若則函數(shù)為增函數(shù),若則函數(shù)為減函數(shù);(2)由(1)中函數(shù)單調(diào)性確定函數(shù)在區(qū)間[1,4]上的單調(diào)性,從而確定函數(shù)的最大值和最小值
試題解析:(1)函數(shù)f(x)在[1,+∞)上是增函數(shù).
任取x1,x2∈[1,+∞),且x1<x2,
f(x1)-f(x2)=,
∵x1-x2<0,(x1+1)(x2+1)>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以函數(shù)f(x)在[1,+∞)上是增函數(shù).
(2)由(1)知函數(shù)f(x)在[1,4]上是增函數(shù),最大值f(4)=,最小值f(1)=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從月份的天中隨機(jī)挑選了天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 |
溫差/℃ | |||||
發(fā)芽數(shù)/顆 |
()從這天中任選天,記發(fā)芽的種子數(shù)分別為, ,求事件“, 均不小于”的概率.
()從這天中任選天,若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)這天中的另天的數(shù)據(jù),求出關(guān)于的線性回歸方程.
()若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的兩組檢驗(yàn)數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,試問()中所得的線性回歸方程是否可靠?
(參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和Sn滿足 ,且a1 , a2+6,a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)利用寒假進(jìn)行社會實(shí)踐活動,對歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是
否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得
到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
(I)補(bǔ)全頻率分布直方圖并求、、的值;
(II)從年齡段在的“低碳族”中采用分層抽樣法抽取人參加戶外低碳體驗(yàn)活動,其中選取人作為領(lǐng)隊(duì),求選取的名領(lǐng)隊(duì)中恰有1人年齡在歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為1的動圓與定圓(x-5)2+(y+7)2=16相切,則動圓圓心的軌跡方程是( )
A. (x-5)2+(y+7)2=25
B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15
C. (x-5)2+(y+7)2=9
D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD-A1B1C1D中,S是B1D1的中點(diǎn),E、F、G分別是BC、CD和SC的中點(diǎn).求證:
(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=5,a2=13,an+2=5an+1﹣6an , 則使該數(shù)列的n項(xiàng)和Sn不小于2016的最小自然數(shù)n等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x)=a(x+ )﹣|x﹣ |(a∈R).
(1)當(dāng)a= 時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥ x對任意的x>0恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com