【題目】以下四個(gè)命題中,其中正確的個(gè)數(shù)為( ) ①命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2=0”;
②“ ”是“cos2α=0”的充分不必要條件;
③若命題 ,則p:x∈R,x2+x+1=0;
④若p∧q為假,p∨q為真,則p,q有且僅有一個(gè)是真命題.
A.1
B.2
C.3
D.4

【答案】B
【解析】解:對(duì)于 ①,命題“若x2﹣3x+2=0,則x=1”的逆否命題為: “若x≠1,則x2﹣3x+2≠0”,故①錯(cuò)誤;
對(duì)于 ②, 時(shí),cos2α=cos =0,充分性成立;
cos2α=0時(shí),α= + ,k∈Z,必要性不成立,
是充分不必要條件,故②正確;
對(duì)于③,命題 ,
則p:x∈R,x2+x+1≠0,故③錯(cuò)誤;
對(duì)于④,當(dāng)p∧q為假命題,p∨q為真命題時(shí),
p,q中有且僅有一個(gè)是真命題,故④正確.
綜上,正確的命題序號(hào)是②④,共2個(gè).
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】持續(xù)高溫使漳州市多地出現(xiàn)氣象干旱,城市用水緊張,為了宣傳節(jié)約用水,某人準(zhǔn)備在一片扇形區(qū)域(如圖3)上按照?qǐng)D4的方式放置一塊矩形ABCD區(qū)域宣傳節(jié)約用水,其中頂點(diǎn)B,C在半徑ON上,頂點(diǎn)A在半徑OM上,頂點(diǎn)D在 上,∠MON= ,ON=OM=10,m,設(shè)∠DON=θ,矩形ABCD的面積為S.
(Ⅰ)用含θ的式子表示DC,OB的長(zhǎng)‘
(Ⅱ)若此人布置1m2的宣傳區(qū)域需要花費(fèi)40元,試將S表示為θ的函數(shù),并求布置此矩形宣傳欄最多要花費(fèi)多少元錢(qián)?(精確到0.01)
(參考數(shù)據(jù): ≈1.732, ≈1.414)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心為C的圓經(jīng)過(guò)O(0,0))和A(4,0)兩點(diǎn),線(xiàn)段OA的垂直平分線(xiàn)和圓C交于M,N兩點(diǎn),且|MN|=2
(1)求圓C的方程
(2)設(shè)點(diǎn)P在圓C上,試問(wèn)使△POA的面積等于2的點(diǎn)P共有幾個(gè)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比數(shù)列,公比不為1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)兩個(gè)非零向量 不共線(xiàn).
(1)若 = + , =2 +8 =3( ).求證:A,B,D三點(diǎn)共線(xiàn);
(2)試確定實(shí)數(shù)k,使k + +k 共線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的焦點(diǎn)分別為F1(﹣2 ,0)和F2(2 ,0),長(zhǎng)軸長(zhǎng)為6,設(shè)直線(xiàn)y=x+2交橢圓C于A、B兩點(diǎn).求:線(xiàn)段AB的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且cos2A+cos2B+2sinAsinB=2coc2C. (Ⅰ)求角C的值;
(Ⅱ)若△ABC為銳角三角形,且 ,求a﹣b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0},且A∪B=A,A∩C=C,求實(shí)數(shù)a,m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,滿(mǎn)足a1=3,a4=12,數(shù)列{bn}滿(mǎn)足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案