【題目】2018年至2020年,第六屆全國(guó)文明城市創(chuàng)建工作即將開始.在2017年9月7日召開的攀枝花市創(chuàng)文工作推進(jìn)會(huì)上,攀枝花市委明確提出“力保新一輪提名城市資格、確保2020年創(chuàng)建成功”的目標(biāo).為了確保創(chuàng)文工作,今年初市交警大隊(duì)在轄區(qū)開展“機(jī)動(dòng)車不禮讓行人整治行動(dòng)” .下表是我市一主干路口監(jiān)控設(shè)備抓拍的5個(gè)月內(nèi) “駕駛員不禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 | |||||
違章駕駛員人數(shù) |
(Ⅰ)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(Ⅱ)預(yù)測(cè)該路口7月份不“禮讓斑馬線”違章駕駛員的人數(shù);
(Ⅲ)交警從這5個(gè)月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查“駕駛員不禮讓斑馬線”行為與駕齡的關(guān)系,得到如下列聯(lián)表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計(jì) | |
駕齡不超過年 | |||
駕齡年以上 | |||
合計(jì) |
能否據(jù)此判斷有97.5%的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值;
(2)若在區(qū)間內(nèi)有唯一的零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos=2.
(1)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)求曲線C上的點(diǎn)到直線l的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅?zhǔn)悄媳背瘯r(shí)代的偉大科學(xué)家,公元五世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積恒相等,那么這兩個(gè)幾何體的體積一定相等.設(shè)A,B為兩個(gè)同高的幾何體,A,B的體積不相等,A,B在等高處的截面積不恒相等.根據(jù)祖暅原理可知,p是q的( )
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中 ,為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若函數(shù)無極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸.曲線的極坐標(biāo)方程為,已知傾斜角為的直線經(jīng)過點(diǎn).
(1)寫出直線的參數(shù)方程;曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知cosA= ,sinB= C.
(1)求tanC的值;
(2)若a= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠為了研究單冊(cè)書籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:
印刷冊(cè)數(shù)(千冊(cè)) | |||||
單冊(cè)成本(元) |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲:,方程乙:.
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計(jì)算結(jié)果精確到);
印刷冊(cè)數(shù)(千冊(cè)) | ||||||
單冊(cè)成本(元) | ||||||
模型甲 | 估計(jì)值 | |||||
殘差 | ||||||
模型乙 | 估計(jì)值 | |||||
殘差 |
②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較,判斷哪個(gè)模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場(chǎng)調(diào)查,新需求量為千冊(cè),若印刷廠以每?jī)?cè)元的價(jià)格將書籍出售給訂貨商,求印刷廠二次印刷千冊(cè)獲得的利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com