【題目】根據(jù)微信同程旅游的調(diào)查統(tǒng)計(jì)顯示,參與網(wǎng)上購(gòu)票的1000位購(gòu)票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個(gè)年齡段的網(wǎng)上購(gòu)票人數(shù)成等差數(shù)列,求a,b的值;
(2)為鼓勵(lì)大家網(wǎng)上購(gòu)票,該平臺(tái)常采用購(gòu)票就發(fā)放酒店入住代金券的方法進(jìn)行促銷,具體做法如下:年齡在[30,50)歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購(gòu)票者中抽取5人,并在這5人中隨機(jī)抽取3人進(jìn)行回訪調(diào)查,求此3人獲得代金券的金額總和為90元的概率.

【答案】
(1)解:由題意可得 ,

解得a=0.035,b=0.025


(2)解:利用分層抽樣從樣本中抽取5人,

其中年齡在[30,50)為3人,其余年齡段的為2人;

隨機(jī)抽取3人,有 =10種,此3人獲得代金券的金額總和為90元,

則需要2個(gè)20元和1個(gè)50元,有 =6種,

所以此3人獲得代金券的金額總和為90元的概率為P= =0.6


【解析】(1)頻率分布直方圖中,頻率=組距×縱坐標(biāo)及頻率和為1,列方程組求解即可;(2)利用分層抽樣原理得出分別抽取的人數(shù),根據(jù)抽取情況及代金卷總和為90元,利用古典概型概率公式求解即可.
【考點(diǎn)精析】利用頻率分布直方圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱ABC﹣A1B1C1中,側(cè)棱 ,AB=2,D,E分別為棱AC,B1C1的中點(diǎn),M,N分別為線段AC1和BE的中點(diǎn).
(1)求證:直線MN∥平面ABC;
(2)求二面角C﹣BD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知離心率為 的橢圓C: + =1(a>b>0)過(guò)點(diǎn)P(﹣1, ).
(1)求橢圓C的方程;
(2)直線AB:y=k(x+1)交橢圓C于A、B兩點(diǎn),交直線l:x=m于點(diǎn)M,設(shè)直線PA、PB、PM的斜率依次為k1、k2、k3 , 問(wèn)是否存在實(shí)數(shù)t,使得k1+k2=tk3?若存在,求出實(shí)數(shù)t的值以及直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a、b∈R)在區(qū)間[0,1]上有零點(diǎn),則ab的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)為R上的可導(dǎo)函數(shù),且對(duì)x∈R,均有f(x)>f′(x),則有(
A.e2016f(﹣2016)<f(0),f(2016)<e2016f(0)
B.e2016f(﹣2016)>f(0),f(2016)>e2016f(0)
C.e2016f(﹣2016)<f(0),f(2016)>e2016f(0)
D.e2016f(﹣2016)>f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問(wèn)題:“今有垣厚十尺,兩鼠對(duì)穿,初日各一尺,大鼠日自倍,小鼠日自半,問(wèn)幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=(
A.4
B.5
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)過(guò)點(diǎn)( ,1),且焦距為2
(1)求橢圓C的方程;
(2)若直線l:y=k(x+1)(k>﹣2)與橢圓C相交于不同的兩點(diǎn)A、B,線段AB的中點(diǎn)M到直線2x+y+t=0的距離為 ,求t(t>2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問(wèn)題:“今有垣厚十尺,兩鼠對(duì)穿,初日各一尺,大鼠日自倍,小鼠日自半,問(wèn)幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=(
A.4
B.5
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了解下屬某部門(mén)對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門(mén)的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100].
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)估計(jì)該企業(yè)的職工對(duì)該部門(mén)評(píng)分不低于80的概率;
(Ⅲ)從評(píng)分在[40,60)的受訪職工中,隨機(jī)抽取2人,求此2人的評(píng)分都在[40,50)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案