【題目】我國古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=(
A.4
B.5
C.2
D.3

【答案】A
【解析】解:模擬執(zhí)行程序,可得

a=1,A=1,S=0,n=1

S=2

不滿足條件S≥10,執(zhí)行循環(huán)體,n=2,a= ,A=2,S=

不滿足條件S≥10,執(zhí)行循環(huán)體,n=3,a= ,A=4,S=

不滿足條件S≥10,執(zhí)行循環(huán)體,n=4,a= ,A=8,S=

滿足條件S≥10,退出循環(huán),輸出n的值為4.

故選:A.

模擬執(zhí)行程序,依次寫出每次循環(huán)得到的a,A,S的值,當(dāng)S= 時,滿足條件S≥10,退出循環(huán),輸出n的值為4,從而得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1:(x+1)2+(y﹣1)2=4,圓C2與圓C1關(guān)于直線x﹣y﹣1=0對稱,則圓C2的方程為(
A.(x+2)2+(y﹣2)2=4
B.(x﹣2)2+(y+2)2=4
C.(x+2)2+(y+2)2=4
D.(x﹣2)2+(y﹣2)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直二面角A﹣BD﹣C中,△ABD、△CBD均是以BD為斜邊的等腰直角三角形,取AD中點(diǎn)E,將△ABE沿BE翻折到△A1BE,在△ABE的翻折過程中,下列不可能成立的是(
A.BC與平面A1BE內(nèi)某直線平行
B.CD∥平面A1BE
C.BC與平面A1BE內(nèi)某直線垂直
D.BC⊥A1B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的各項(xiàng)均為正數(shù),且an+1=an+ ﹣1(n∈N*),{an}的前n項(xiàng)和是Sn
(Ⅰ)若{an}是遞增數(shù)列,求a1的取值范圍;
(Ⅱ)若a1>2,且對任意n∈N* , 都有Sn≥na1 (n﹣1),證明:Sn<2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)微信同程旅游的調(diào)查統(tǒng)計顯示,參與網(wǎng)上購票的1000位購票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個年齡段的網(wǎng)上購票人數(shù)成等差數(shù)列,求a,b的值;
(2)為鼓勵大家網(wǎng)上購票,該平臺常采用購票就發(fā)放酒店入住代金券的方法進(jìn)行促銷,具體做法如下:年齡在[30,50)歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購票者中抽取5人,并在這5人中隨機(jī)抽取3人進(jìn)行回訪調(diào)查,求此3人獲得代金券的金額總和為90元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是直角△ABC斜邊BC上一點(diǎn),AC= DC.
(1)若∠DAC=30°,求角B的大;
(2)若BD=2DC,且AD=3 ,求DC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= mcos2x+(m﹣2)sinx,其中1≤m≤2,若函數(shù)f(x)的最大值記為g(m),則g(m)的最小值為(
A.﹣
B.1
C.3﹣
D. ﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊為a、b、c,且滿足cos2A﹣cos2B=2cos(A﹣ )cos(A+ ).
(Ⅰ)求角B的值;
(Ⅱ)若b= ≤a,求2a﹣c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當(dāng)x= 時,函數(shù)f(x)取得最小值,則下列結(jié)論正確的是(
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)

查看答案和解析>>

同步練習(xí)冊答案