精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直二面角A﹣BD﹣C中,△ABD、△CBD均是以BD為斜邊的等腰直角三角形,取AD中點E,將△ABE沿BE翻折到△A1BE,在△ABE的翻折過程中,下列不可能成立的是(
A.BC與平面A1BE內某直線平行
B.CD∥平面A1BE
C.BC與平面A1BE內某直線垂直
D.BC⊥A1B

【答案】D
【解析】解:連結CE,當平面A1BE與平面BCE重合時,BC平面A1BE,

∴平面A1BE內必存在與BC平行和垂直的直線,故A,C可能成立;

在平面BCD內過B作CD的平行線BF,使得BF=CD,

連結EF,則當平面A1BE與平面BEF重合時,BF平面A1BE,

故平面A1BE內存在與BF平行的直線,即平面A1BE內存在與CD平行的直線,

∴CD∥平面A1BE,故C可能成立.

若BC⊥A1B,又A1B⊥A1E,則A1B為直線A1E和BC的公垂線,

∴A1B<CE,

設A1B=1,則經計算可得CE= ,

與A1B<CE矛盾,故D不可能成立.

故選D.

【考點精析】本題主要考查了空間中直線與直線之間的位置關系的相關知識點,需要掌握相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知 是函數f(x)=msinωx﹣cosωx(m>0)的一條對稱軸,且f(x)的最小正周期為π
(Ⅰ)求m值和f(x)的單調遞增區(qū)間;
(Ⅱ)設角A,B,C為△ABC的三個內角,對應邊分別為a,b,c,若f(B)=2, ,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列四個函數中,以π為最小正周期,且在區(qū)間( ,π)上為減函數的是(
A.y=cos2x
B.y=2|sinx|
C.
D.y=﹣cotx

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|2x﹣a|+|x﹣1|.
(1)當a=3時,求不等式f(x)≥2的解集;
(2)若f(x)≥5﹣x對x∈R恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知離心率為 的橢圓C: + =1(a>b>0)過點P(﹣1, ).
(1)求橢圓C的方程;
(2)直線AB:y=k(x+1)交橢圓C于A、B兩點,交直線l:x=m于點M,設直線PA、PB、PM的斜率依次為k1、k2、k3 , 問是否存在實數t,使得k1+k2=tk3?若存在,求出實數t的值以及直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,△PAD為正三角形,四邊形ABCD為直角梯形,CD∥AB,BC⊥AB,平面PAD⊥平面ABCD,點E、F分別為AD、CP的中點,AD=AB=2CD=2.
(Ⅰ)證明:直線EF∥平面PAB;
(Ⅱ)求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+ax+b(a、b∈R)在區(qū)間[0,1]上有零點,則ab的最大值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學典籍《九章算術》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現用程序框圖描述,如圖所示,則輸出結果n=(
A.4
B.5
C.2
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓M: (a>b>0)的一個焦點為F(1,0),離心率為 ,過點F的動直線交M于A,B兩點,若x軸上的點P(t,0)使得∠APO=∠BPO總成立(O為坐標原點),則t=(
A.2
B.
C.
D.﹣2

查看答案和解析>>

同步練習冊答案