1.F是拋物線y2=2x的焦點(diǎn),以F為端點(diǎn)的射線與拋物線相交于A,與拋物線的準(zhǔn)線相交于B,若$\overrightarrow{FB}=4\overrightarrow{FA}$,則$\overrightarrow{FA}•\overrightarrow{FB}$=(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{9}{4}$

分析 由題意,利用拋物線的定義,結(jié)合向量條件,求出A的橫坐標(biāo),即可得出結(jié)論.

解答 解:由題意,設(shè)A的橫坐標(biāo)為m,則由拋物線的定義,可得$\frac{m+\frac{1}{2}}{1}=\frac{3}{4}$,∴m=$\frac{1}{4}$,
∴|FA|=$\frac{3}{4}$,|FB|=3,
∴$\overrightarrow{FA}•\overrightarrow{FB}$=|FA||FB|=$\frac{9}{4}$,
故選D.

點(diǎn)評 本題考查拋物線的定義、向量知識的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.歐拉公式eix=cosx+isinx(i為虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)明的,它將復(fù)數(shù)、指數(shù)函數(shù)與三角函數(shù)聯(lián)系起來,將指數(shù)函數(shù)的定義域擴(kuò)充為復(fù)數(shù),它在復(fù)變函數(shù)論里占有非常重要的地位,被譽(yù)為“數(shù)學(xué)中的天驕”,根據(jù)歐拉公式可知,復(fù)數(shù)e-2i所對應(yīng)的點(diǎn)在復(fù)平面中位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知F1、F2是橢圓和雙曲線的公共焦點(diǎn),P是他們的一個(gè)公共點(diǎn),且∠F1PF2=$\frac{π}{3}$,則橢圓和雙曲線的離心率之積的最小值為(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+bx+c在$x=-\frac{2}{3}$與x=1處都取得極值.
(1)求a,b的值;
(2)若對x∈R,f(x)有三個(gè)零點(diǎn),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某商場對一個(gè)月內(nèi)每天的顧客人數(shù)進(jìn)行統(tǒng)計(jì),得到如圖所示的樣本莖葉圖,則該樣本的中位數(shù)和眾數(shù)分別是(  )
A.46,45B.45,46C.45,45D.47,45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.$\overrightarrow{a}$、$\overrightarrow$為單位向量,若$|\overrightarrow{a}-4\overrightarrow|=3\sqrt{2}$,則$|\overrightarrow{a}+4\overrightarrow|$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)i是虛數(shù)單位,若(2a+i)(1-2i)是純虛數(shù),則實(shí)數(shù)a=( 。
A.1B.-1C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.中國古代數(shù)學(xué)名著《張丘建算經(jīng)》中記載:“今有馬行轉(zhuǎn)遲,次日減半,疾七日,行七百里其意是:現(xiàn)有一匹馬行走的速度逐漸變慢,每天走的里數(shù)是前一天的一半,連續(xù)行走7天,共走 了 700里.若該匹馬按此規(guī)律繼續(xù)行走7天,則它這14天內(nèi)所走的總路程為( 。
A.$\frac{175}{32}$里B.1050 里C.$\frac{22575}{32}$里D.2100里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,角A,B,C的對邊分別為a,b,c,若a=4$\sqrt{2}$,b=5,cosA=-$\frac{3}{5}$,則向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影為( 。
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{7\sqrt{2}}{2}$D.$\frac{7\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊答案