如圖,在四棱錐S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AD=1,點M是SD的中點,AN⊥SC,交SC于點N.
(1)求證:平面SAC⊥平面AMN;
(2)求三棱錐S-ACM的體積.
考點:棱柱、棱錐、棱臺的體積,平面與平面垂直的判定
專題:綜合題,空間位置關(guān)系與距離
分析:(1)利用面面垂直的判定定理證明平面SAC⊥平面AMN.
(2)利用VS-ACM=VD-ACM=VM-DAC,即可求三棱錐S-ACM的體積.
解答: (1)證明:∵SA⊥底面ABCD,底面ABCD是正方形,
∴DC⊥SA,DC⊥DA,
∴DC⊥平面SAD,
∴DC⊥AM,
又∵SA=AD,M是SD的中點,
∴AM⊥SD,
∴AM⊥平面SDC
∴SC⊥AM.
由已知AN⊥SC,
∴SC⊥平面AMN.
又SC?平面SAC,
∴平面SAC⊥平面AMN.…(6分)
(2)解:∵M是SD的中點,∴VS-ACM=VD-ACM=VM-DAC…(9分)
VS-ACM=
1
3
S△ACD
1
2
SA=
1
3
1
2
1
2
=
1
12
…(12分)
點評:本小題主要考查空間線面關(guān)系、三棱錐S-ACM的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學思想方法,以及空間想象能力、推理論證能力和運算求解能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

記X(x y 1),T=
A0  D
0-A E
DE  F
,X′=
x 
y 
1 
,則方程XTX′=0表示的曲線只可能是( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(Ⅰ)求證:AB1⊥A1D;
(Ⅱ)求點C到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,底面是等腰梯形的四棱錐E-ABCD中,EA⊥平面ABCD,AB∥CD,AB=2CD,∠ABC=
π
3

(Ⅰ)設(shè)F為EA的中點,證明:DF∥平面EBC;
(Ⅱ)若AE=AB=2,求三棱錐B-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將邊長為4的正方形ABCD和等腰直角三角形ABE按圖拼為新的幾何圖形,△ABE中,AB=AE,連結(jié)DE,CE,若DE=4
2
,M為BE中點
(Ⅰ)求CM與DE所成角的大。
(Ⅱ)若N為CE中點,證明:MN∥平面ADE;
(Ⅲ)證明:平面CAM⊥平面CBE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知b=3,c=8,角A為銳角,△ABC的面積為6
3

(1)求角A的大;
(2)求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有排成一行的7個空位置,3位女生去坐,要求任何兩個女生之間都要有空位,共有
 
種不同的坐法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖菱形ABEF所在平面與直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,點H是線段EF的中點.
(1)求證:平面AHC⊥平面BCE; 
(2)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ)已知復(fù)數(shù)z=1-i(i是虛數(shù)單位),若z2+a
.
z
+b=3-3i,求實數(shù)a,b的值.
(Ⅱ)求二項式(
x
+
1
3x2
10展開式中的常數(shù)項.

查看答案和解析>>

同步練習冊答案