【題目】已知兩直線l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0,分別求滿足下列條件的a,b值
(1)l1⊥l2,且直線l1過點(diǎn)(﹣3,﹣1);
(2)l1∥l2,且直線l1在兩坐標(biāo)軸上的截距相等.
【答案】(1)a=2,b=2(2)a=2,b=﹣2
【解析】
試題分析:(1)由直線垂直和直線l1過定點(diǎn)可得ab的方程組,解方程組可得;(2)由直線平行和直線l1截距相等可得ab的方程組,解方程組可得
試題解析:(1)∵兩直線l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0且l1⊥l2,
∴a(a﹣1)+(﹣b)×1=0,即a2﹣a﹣b=0,
又∵直線l1過點(diǎn)(﹣3,﹣1),∴﹣3a+b+4=0,
聯(lián)立解得a=2,b=2;
(2)由l1∥l2可得a×1﹣(﹣b)(a﹣1)=0,即a+ab﹣b=0,
在方程ax﹣by+4=0中令x=0可得y=,令y=0可得x=﹣,
∴=﹣,即b=﹣a,聯(lián)立解得a=2,b=﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點(diǎn),根據(jù)下列條件分別求出直線的方程:
(1)直線的傾斜角為;
(2)與直線x-2y+1=0垂直;
(3)在軸、軸上的截距之和等于0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在的平行四邊形中,垂直平分,且,現(xiàn)將沿折起(如圖2),使.
(Ⅰ)求證:直線平面;
(Ⅱ)求平面與平面所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:關(guān)于x的方程x2+ax+2=0無實(shí)根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出定義在上的兩個(gè)函數(shù),.
(1)若在處取最值.求的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(3)試確定函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某河上有座拋物線型拱橋,當(dāng)水面距拱頂5m時(shí)水面寬為8m,一木船寬為4m,高為2m,載貨后木船露在水面上的部分高為0.75m,問水面上漲到與拱頂相距多少時(shí),木船開始不能通過。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),已知在處的切線相同.
(1)求的值及切線的方程;
(2)設(shè)函數(shù),若存在實(shí)數(shù)使得關(guān)于的不等式對(duì)上的任意實(shí)數(shù)恒成立,求的最小值及對(duì)應(yīng)的的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某加工廠需定期購(gòu)買原材料,已知每公斤原材料的價(jià)格為1.5元,每次購(gòu)買原材料需支付運(yùn)費(fèi)600元,每公斤原材料每天的保管費(fèi)用為0.03元,該廠每天需要消耗原材料400公斤,每次購(gòu)買的原材料當(dāng)天即開始使用(即有400公斤不需要保管).
(Ⅰ)設(shè)該廠每x天購(gòu)買一次原材料,試寫出每次購(gòu)買的原材料在x天內(nèi)總的保管費(fèi)用y1關(guān)于x的函數(shù)關(guān)系式;
(Ⅱ)求該廠多少天購(gòu)買一次原材料才能使平均每天支付的總費(fèi)用y最少,并求出這個(gè)最少(小)值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若<<0,則下列不等式:①<;②|a|+b>0;③a->b-;④lna2>lnb2中,正確的是( )
(A)①④ (B)②③ (C)①③ (D)②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com