【題目】已知兩直線l1axby+4=0,l2:(a1x+y+b=0,分別求滿足下列條件的a,b

1l1l2,且直線l1過點(diǎn)(3,1);

2l1l2,且直線l1在兩坐標(biāo)軸上的截距相等.

【答案】1a=2,b=22a=2b=2

【解析】

試題分析:(1)由直線垂直和直線l1過定點(diǎn)可得ab的方程組,解方程組可得;(2)由直線平行和直線l1截距相等可得ab的方程組,解方程組可得

試題解析:1兩直線l1axby+4=0l2:(a1x+y+b=0l1l2,

aa1+b×1=0,即a2ab=0,

直線l1過點(diǎn)(3,1),∴﹣3a+b+4=0,

聯(lián)立解得a=2b=2;

2)由l1l2可得a×1b)(a1=0,即a+abb=0,

在方程axby+4=0中令x=0可得y=,令y=0可得x=

=,即b=a,聯(lián)立解得a=2,b=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過點(diǎn),根據(jù)下列條件分別求出直線的方程:

(1)直線的傾斜角為

(2)與直線x-2y+1=0垂直;

(3)軸、軸上的截距之和等于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平行四邊形,直平分,,現(xiàn)將沿如圖2,使

求證:直線;

平面平面成的角銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:關(guān)于x的方程x2ax20無實(shí)根,命題q:函數(shù)f(x)logax(0,+)上單調(diào)遞增,若pq為假命題,pq真命題,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出定義在上的兩個(gè)函數(shù),.

1處取最值.求的值;

2若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍;

3試確定函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某河上有座拋物線型拱橋,當(dāng)水面距拱頂5m時(shí)水面寬為8m,一木船寬為4m,高為2m,載貨后木船露在水面上的部分高為0.75m,問水面上漲到與拱頂相距多少時(shí),木船開始不能通過。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),已知處的切線相同.

1的值及切線的方程;

2設(shè)函數(shù),若存在實(shí)數(shù)使得關(guān)于的不等式對(duì)上的任意實(shí)數(shù)恒成立,求的最小值及對(duì)應(yīng)的的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某加工廠需定期購(gòu)買原材料,已知每公斤原材料的價(jià)格為1.5元,每次購(gòu)買原材料需支付運(yùn)費(fèi)600元,每公斤原材料每天的保管費(fèi)用為0.03元,該廠每天需要消耗原材料400公斤,每次購(gòu)買的原材料當(dāng)天即開始使用(即有400公斤不需要保管).

)設(shè)該廠每x天購(gòu)買一次原材料,試寫出每次購(gòu)買的原材料在x天內(nèi)總的保管費(fèi)用y1關(guān)于x的函數(shù)關(guān)系式;

)求該廠多少天購(gòu)買一次原材料才能使平均每天支付的總費(fèi)用y最少,并求出這個(gè)最少(小)值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1a<1b<0,則下列不等式:1a+b<1ab;|a|+b>0;a-1a>b-1b;lna2>lnb2中,正確的是(  )

(A)①④  (B)②③  (C)①③  (D)②④

查看答案和解析>>

同步練習(xí)冊(cè)答案