【題目】若數列對任意的,都有,且,則稱數列為“k級創(chuàng)新數列”.
(1)已知數列滿足且,試判斷數列是否為“2級創(chuàng)新數列”,并說明理由;
(2)已知正數數列為“k級創(chuàng)新數列”且,若,求數列的前n項積;
(3)設,是方程的兩個實根,令,在(2)的條件下,記數列的通項,求證:.
【答案】(1)數列是“2級創(chuàng)新數列”,見解析(2)(3)見解析
【解析】
(1)數列是“2級創(chuàng)新數列”,下面給出證明:,可得
,即可證明.
(2)正數數列為“k級創(chuàng)新數列”且,.又,
利用指數的運算性質可得數列的前n項積.
(3),是方程的兩個實根,可得.在(2)的條件下,記數列的通項.
(1)解:數列是“2級創(chuàng)新數列”,下面給出證明:
,
,
數列是“2級創(chuàng)新數列”.
(2)解:正數數列為“k級創(chuàng)新數列”且,
.
.
又,
數列的前n項積
.
(3)證明:,是方程的兩個實根,
.
在(2)的條件下,記數列的通項
.
.
.
.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線的參數方程為 (為參數),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線與恰有一個公共點.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)已知曲線上兩點,滿足,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】農歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內有一球,則該球體積的最大值為____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知雙曲線:.
(1)設是的左焦點,是右支上一點.若,求點的坐標;
(2)設斜率為1的直線交于、兩點,若與圓相切,求證:;
(3)設橢圓:.若、分別是、上的動點,且,求證:到直線的距離是定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是國家統計局給出的2014年至2018年我國城鄉(xiāng)就業(yè)人員數量的統計圖表,結合這張圖表,以下說法錯誤的是( )
A.2017年就業(yè)人員數量是最多的
B.2017年至2018年就業(yè)人員數量呈遞減狀態(tài)
C.2016年至2017年就業(yè)人員數量與前兩年比較,增加速度減緩
D.2018年就業(yè)人員數量比2014年就業(yè)人員數量增長超過400萬人
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,點M,N分別為A′B和B′C′的中點.
(1)證明:MN∥平面A′ACC′;
(2)若二面角A′﹣MN﹣C為直二面角,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列滿足:,,.
(1)求的值;
(2)設,求證:數列是等比數列,并求出其通項公式;
(3)對任意的,,在數列中是否存在連續(xù)的項構成等差數列?若存在,寫出這項,并證明這項構成等差數列:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com