【題目】如圖,在正三棱柱中,底面的邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,是線段上一點(diǎn),是線段的中點(diǎn),的中點(diǎn).以為正交基底,建立如圖所示的空間直角坐標(biāo)系.

(1)若,求直線和平面所成角的正弦值;

(2)若二面角的正弦值為,求的長(zhǎng).

【答案】(1)(2)1或3.

【解析】分析:(1)求出與平面的法向量即可計(jì)算;

(2)設(shè),則,用a表述出平面的一個(gè)法向量,而是平面的一個(gè)法向量,即可計(jì)算出a的值,從而可得答案.

詳解:根據(jù)題意得,,

所以,,

(1)當(dāng)是線段的中點(diǎn)時(shí),,

設(shè)平面的一個(gè)法向量為

,得,

,取,得,

設(shè)和平面所成角為

,

所以和平面所成角的正弦值為.

(2)設(shè),則,

設(shè)平面的一個(gè)法向量為

,得,

,取,得,

顯然是平面的一個(gè)法向量,

設(shè)二面角的大小為,則,

所以 ,

解得或3,所以的長(zhǎng)為1或3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥ AB,M是EC上的點(diǎn)(不與端點(diǎn)重合),F(xiàn)為DA上的點(diǎn),N為BE的中點(diǎn).

(Ⅰ)若M是EC的中點(diǎn),AF=3FD,求證:FN∥平面MBD;
(Ⅱ)若平面MBD與平面ABD所成角(銳角)的余弦值為 ,試確定點(diǎn)M在EC上的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需將函數(shù)y=f(x)的圖象(
A.向左平移 個(gè)單位長(zhǎng)度
B.向左平移 個(gè)單位長(zhǎng)度
C.向右平移 個(gè)單位長(zhǎng)度
D.向右平移 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中, , ,若將其沿AC折成直二面角D﹣AC﹣B,則三棱錐D﹣ACB的外接球的表面積為(
A.16π
B.8π
C.4π
D.2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn , 若an+1+(﹣1)nan=n,則S40=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.

(1)求證:BC⊥面CDE;

(2)在線段AE上是否存在一點(diǎn)R,使得面BDR⊥面DCB,若存在,求出點(diǎn)R的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線處的切線與直線平行,求實(shí)數(shù)的值;

(Ⅱ)若函數(shù)在定義域上為增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅲ)若有兩個(gè)極值點(diǎn),且,,若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求點(diǎn)在上,點(diǎn)在上,且對(duì)角線點(diǎn),已知米,米.

(1)要使矩形的面積大于平方米,則的長(zhǎng)應(yīng)在什么范圍內(nèi)?

(2)當(dāng)的長(zhǎng)度是多少時(shí),矩形花壇的面積最小?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,近日我漁船編隊(duì)在島周圍海域作業(yè),在島的南偏西20°方向有一個(gè)海面觀測(cè)站,某時(shí)刻觀測(cè)站發(fā)現(xiàn)有不明船只向我漁船編隊(duì)靠近,現(xiàn)測(cè)得與相距31海里的處有一艘海警船巡航,上級(jí)指示海警船沿北偏西40°方向,以40海里/小時(shí)的速度向島直線航行以保護(hù)我漁船編隊(duì),30分鐘后到達(dá)處,此時(shí)觀測(cè)站測(cè)得間的距離為21海里.

(Ⅰ)求的值;

(Ⅱ)試問海警船再向前航行多少分鐘方可到島?

查看答案和解析>>

同步練習(xí)冊(cè)答案