【題目】如圖所示,近日我漁船編隊在島周圍海域作業(yè),在島的南偏西20°方向有一個海面觀測站,某時刻觀測站發(fā)現(xiàn)有不明船只向我漁船編隊靠近,現(xiàn)測得與相距31海里的處有一艘海警船巡航,上級指示海警船沿北偏西40°方向,以40海里/小時的速度向島直線航行以保護(hù)我漁船編隊,30分鐘后到達(dá)處,此時觀測站測得間的距離為21海里.

(Ⅰ)求的值;

(Ⅱ)試問海警船再向前航行多少分鐘方可到島?

【答案】(Ⅰ); (Ⅱ)海警船再向前航行22.5分鐘即可到達(dá)島.

【解析】

(Ⅰ) 中,根據(jù)余弦定理求得余弦值,再求正弦值得到答案.

(Ⅱ)首先利用和差公式計算,中,由正弦定理可得長度,最后得到時間.

(Ⅰ)由已知可得,

中,根據(jù)余弦定理求得,

(Ⅱ)由已知可得,

中,由正弦定理可得,

分鐘.

即海警船再向前航行22.5分鐘即可到達(dá)島

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱中,底面的邊長為2,側(cè)棱長為4,是線段上一點,是線段的中點,的中點.以為正交基底,建立如圖所示的空間直角坐標(biāo)系.

(1)若,求直線和平面所成角的正弦值;

(2)若二面角的正弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰直角三角形的斜邊所在直線方程為,其中點在點上方,直角頂點的坐標(biāo)為

(1)求邊上的高線所在直線的方程;

(2)求等腰直角三角形的外接圓的標(biāo)準(zhǔn)方程;

(3)分別求兩直角邊,所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在道路邊安裝路燈,路面,燈柱高14,燈桿與地面所成角為30°.路燈采用錐形燈罩,燈罩軸線與燈桿垂直,軸線,燈桿都在燈柱和路面寬線確定的平面內(nèi).

(1)當(dāng)燈桿長度為多少時,燈罩軸線正好通過路面的中線?

(2)如果燈罩軸線AC正好通過路面的中線,此時有一高2.5 的警示牌直立在處,求警示牌在該路燈燈光下的影子長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)已知函數(shù)f(x)=|2x﹣3|﹣2|x|,若關(guān)于x不等式f(x)≤|a+2|+2a恒成立,求實數(shù)a的取值范圍; (Ⅱ)已知正數(shù)x,y,z滿足2x+y+z=1,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某制造商月生產(chǎn)了一批乒乓球,隨機(jī)抽樣個進(jìn)行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)分組如下表

分組

頻數(shù)

頻率

10

20

50

20

合計

100

(1)請在上表中補充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在上圖中畫出頻率分布直方圖;

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值是)作為代表.據(jù)此估計這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=e2x(ax2+2x﹣1),a∈R.
(Ⅰ)當(dāng)a=4時,求證:過點P(1,0)有三條直線與曲線y=f(x)相切;
(Ⅱ)當(dāng)x≤0時,f(x)+1≥0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面,其中為矩形,為梯形,,,.

(Ⅰ)求證:平面

(Ⅱ)若二面角的平面角的余弦值為,求的長.

查看答案和解析>>

同步練習(xí)冊答案