已知橢圓的離心率為.
(1)若原點(diǎn)到直線(xiàn)的距離為,求橢圓的方程;
(2)設(shè)過(guò)橢圓的右焦點(diǎn)且傾斜角為的直線(xiàn)和橢圓交于A,B兩點(diǎn).
當(dāng),求b的值;
(1);(2)1.

試題分析:
解題思路:(1)利用點(diǎn)到直線(xiàn)的距離公式求出b值,利用離心率以及求得橢圓方程;
(2)聯(lián)立直線(xiàn)與橢圓的方程,整理得到關(guān)于的一元二次方程,利用弦長(zhǎng)公式求值.
規(guī)律總結(jié):圓錐曲線(xiàn)的問(wèn)題一般都有這樣的特點(diǎn):第一小題是基本的求方程問(wèn)題,一般簡(jiǎn)單的利用定義和性質(zhì)即可;后面幾個(gè)小題一般來(lái)說(shuō)綜合性較強(qiáng),用到的內(nèi)容較多,大多數(shù)需要整體把握問(wèn)題并且一般來(lái)說(shuō)計(jì)算量很大,學(xué)生遇到這種問(wèn)題就很棘手,有放棄的想法所以處理這類(lèi)問(wèn)題一定要有耐心.
試題解析:(1),.  
, 解得.
所以橢圓的方程為.             
(2),,橢圓的方程可化為:
      ①
易知右焦點(diǎn),據(jù)題意有AB:    ②
由①,②有:   ③
設(shè),

 .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓Γ:(a>b>0)經(jīng)過(guò)D(2,0),E(1,)兩點(diǎn).
(1)求橢圓Γ的方程;
(2)若直線(xiàn)與橢圓Γ交于不同兩點(diǎn)A,B,點(diǎn)G是線(xiàn)段AB中點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),設(shè)射線(xiàn)OG交Γ于點(diǎn)Q,且.
①證明:
②求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,設(shè)橢圓,其中,過(guò)橢圓內(nèi)一點(diǎn)的兩條直線(xiàn)分別與橢圓交于點(diǎn),且滿(mǎn)足,其中為正常數(shù). 當(dāng)點(diǎn)恰為橢圓的右頂點(diǎn)時(shí),對(duì)應(yīng)的.
(1)求橢圓的離心率;
(2)求的值;
(3)當(dāng)變化時(shí),是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)橢圓的左右焦點(diǎn)為,上頂點(diǎn)為,點(diǎn)關(guān)于對(duì)稱(chēng),且
(1)求橢圓的離心率;
(2)已知是過(guò)三點(diǎn)的圓上的點(diǎn),若的面積為,求點(diǎn)到直線(xiàn)距離的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,定點(diǎn)A和B都在平面α內(nèi),定點(diǎn)P∉α,PB⊥α,C是α內(nèi)異于A和B的動(dòng)點(diǎn),且PC⊥AC.那么,動(dòng)點(diǎn)C在平面α內(nèi)的軌跡是( 。
A.一條線(xiàn)段,但要去掉兩個(gè)點(diǎn)
B.一個(gè)圓,但要去掉兩個(gè)點(diǎn)
C.一個(gè)橢圓,但要去掉兩個(gè)點(diǎn)
D.半圓,但要去掉兩個(gè)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在圓x2+y2=4上任取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線(xiàn)段PD,D為垂足.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線(xiàn)段PD的中點(diǎn)M的軌跡是( 。
A.橢圓B.雙曲線(xiàn)C.拋物線(xiàn)D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線(xiàn)l:y=mx+1與曲線(xiàn)C:ax2+y2=2(m、a∈R)交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)當(dāng)m=0時(shí),有∠AOB=
π
3
,求曲線(xiàn)C的方程;
(2)當(dāng)實(shí)數(shù)a為何值時(shí),對(duì)任意m∈R,都有
OA
OB
為定值T?指出T的值;
(3)已知點(diǎn)M(0,-1),當(dāng)a=-2,m變化時(shí),動(dòng)點(diǎn)P滿(mǎn)足
MP
=
OA
+
OB
,求動(dòng)點(diǎn)P的縱坐標(biāo)的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)A(-2,0),B(2,0),直線(xiàn)AG,BG相交于點(diǎn)G,且它們的斜率之積是-
1
4

(Ⅰ)求點(diǎn)G的軌跡Ω的方程;
(Ⅱ)圓x2+y2=4上有一個(gè)動(dòng)點(diǎn)P,且P在x軸的上方,點(diǎn)C(1,0),直線(xiàn)PA交(Ⅰ)中的軌跡Ω于D,連接PB,CD.設(shè)直線(xiàn)PB,CD的斜率存在且分別為k1,k2,若k1=λk2,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知線(xiàn)段,的中點(diǎn)為,動(dòng)點(diǎn)滿(mǎn)足為正常數(shù)).
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)所在的曲線(xiàn)方程;
(2)若,動(dòng)點(diǎn)滿(mǎn)足,且,試求面積的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案