(本大題15分)設(shè)是正數(shù)數(shù)列,其前n項(xiàng)和Sn滿足

  (1)求數(shù)列的通項(xiàng)公式;

  (2)令,試求的前n項(xiàng)和Tn

解析:(1)由得,=3

    由  。4分)

    故  

∵   ∴ 

    {}是以3為首項(xiàng),2為公差的等差數(shù)列,故=2n+1   。8分)

 。2)=2n+1  ∴   

     Tn

     。       (15分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本大題共15分)已知上是增函數(shù),上是減函數(shù).(1)求的值;(2)設(shè)函數(shù)上是增函數(shù),且對(duì)于內(nèi)的任意兩個(gè)變量,恒有成立,求實(shí)數(shù)的取值范圍;(3)設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高二上學(xué)期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

如圖,在半徑為圓形(為圓心)鋁皮上截取一塊矩形材料,其中點(diǎn)在圓上,點(diǎn)、在兩半徑上,現(xiàn)將此矩形鋁皮卷成一個(gè)以為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長(zhǎng),圓柱的體積為.

(1)寫出體積關(guān)于的函數(shù)關(guān)系式,并指出定義域;

(2)當(dāng)為何值時(shí),才能使做出的圓柱形罐子體積最大?最大體積是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三元月雙周練習(xí)數(shù)學(xué)試卷 題型:解答題

(本小題滿分15分)已知橢圓C:+=1(a>b>0)的離心率為,且經(jīng)過點(diǎn)P(1,).

(1)求橢圓C的方程;

(2)設(shè)F是橢圓C的右焦點(diǎn),M為橢圓上一點(diǎn),以M為圓心,MF為半徑作圓M.問點(diǎn)M滿足什么條件時(shí),圓M與y軸有兩個(gè)交點(diǎn)? 并求兩點(diǎn)間距離的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

考試結(jié)束,請(qǐng)將本試題卷和答題卡一并上交。

一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

1.設(shè)全集,集合,,則圖中的陰影部分表示的集合為

A.                  B.

C.                 D.

2.已知非零向量滿足,那么向量與向量的夾角為

A.    B.    C.    D.

3.的展開式中第三項(xiàng)的系數(shù)是

       A.               B.               C.15              D.

4.圓與直線相切于點(diǎn),則直線的方程為

A.   B.   C.  D.

查看答案和解析>>

同步練習(xí)冊(cè)答案