【題目】如圖,已知三棱柱的側(cè)棱垂直于底面,,,點分別是和的中點.
(1)證明:平面;
(2)設(shè),當(dāng)為何值時,平面,試證明你的結(jié)論.
【答案】(1)見解析(2)當(dāng)時,⊥平面.見解析
【解析】
(1)取的中點,連接,由面面平行判定定理可得平面∥平面,進(jìn)而證明平面;
(2)連接,可設(shè),則,要使⊥平面,只需即可,由線面垂直的判定定理可得的方程,解方程即可求得的值.
(1)證明:取的中點,連接.如下圖所示:
因為點分別是和的中點,
所以N,,
又面,面,
所以∥平面,∥平面,
所以平面∥平面,因為平面,
所以∥平面.
(2)連接,如下圖所示:
設(shè),則,
由題意知,,
∵三棱柱的側(cè)棱垂直于底面,
∴平面⊥平面,
∵,點是的中點,
∴⊥平面,
∴.
要使⊥平面,只需即可,
∴,,
∴ ,
∴當(dāng)時,⊥平面.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長度為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點,點是橢圓上的點,是坐標(biāo)原點,若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-a|-x(a>0).
(1)若a=3,解關(guān)于x的不等式f(x)<0;
(2)若對于任意的實數(shù)x,不等式f(x)-f(x+a)<a2+恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點
(1)求橢圓的方程;
(2)設(shè)不過原點的直線與該橢圓交于兩點,滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,一個長軸頂點在直線上,若直線與橢圓交于,兩點,為坐標(biāo)原點,直線的斜率為,直線的斜率為.
(1)求該橢圓的方程.
(2)若,試問的面積是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為(t為參數(shù)),其中α∈(0,),以原點O為點x軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ﹣2sinθ=0.
(1)寫出直線l1的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l1,l2分別與曲線C交于點A,B(非坐標(biāo)原點)求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)f(x)=,其中a>0.
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com