如圖為函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象.
(1)確定它的解析式;
(2)寫出它的對稱軸方程及對稱中心.
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(1)由圖象可得A,從而解得ω,由函數(shù)的圖象經(jīng)過(
π
10
,0),可得φ,從而可求函數(shù)的解析式y(tǒng)=2sin(2x+
π
5
);
(2)由2x+
π
5
=kπ+
π
2
,k∈Z可解得它的對稱軸方程.由2x+
π
5
=kπ,k∈Z可解得它的對稱中心.
解答: 解:(1)由圖象可知:A=3…(3分)
T=2×(
π
10
+
5
)=π,
∴ω=2…..(6分)
函數(shù)的圖象經(jīng)過(
π
10
,0),
所以0=2sin[2×
π
10
+φ],
∵φ+
π
5
=kπ,|φ|<
π
2
,
∴φ=
π
5
.…(9分)
∴函數(shù)的解析式y(tǒng)=2sin(2x+
π
5
)….(10分)
(2)由2x+
π
5
=kπ+
π
2
,k∈Z可解得它的對稱軸方程為:x=
1
2
kπ+
20
,k∈Z
由2x+
π
5
=kπ,k∈Z可解得它的對稱中心為:(
1
2
kπ-
π
10
,0),k∈Z…(12分)
點評:本題考查函數(shù)的解析式的求法,三角函數(shù)的圖象和性質(zhì)的應(yīng)用,考查學(xué)生的視圖用圖能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

據(jù)報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關(guān)注,為了解某地區(qū)學(xué)生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計的結(jié)果如下表:
態(tài)度
調(diào)查人群
應(yīng)該取消應(yīng)該保留無所謂
在校學(xué)生2100人120人y人
社會人士600人x人z人
已知在全體樣本中隨機抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)已知y≥657,z≥55,若所選擇的在校學(xué)生的人數(shù)低于被調(diào)查人群總數(shù)的80%,則認為本次調(diào)查“失效”,求本次調(diào)查“失效”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示程序的輸出結(jié)果為s=132.則判斷中應(yīng)填
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出定義域為{x|-3≤x≤8,且x≠5},值域為{y|-1≤y≤2,y≠0}的一個函數(shù)的圖象
(1)將你的圖象和其他同學(xué)的相比較,有什么差別嗎?
(2)如果平面直角坐標系中點P(x,y)的坐標滿足-3≤x≤8,-1≤y≤2,那么其中哪些點不能在圖象上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知圓C:x2+y2=r2(r>0)上點(1,
3
)
處切線的斜率為-
3
3
,圓C與y軸的交點分別為A,B,與x軸正半軸的交點為D,P為圓C在第一象限內(nèi)的任意一點,直線BD與AP相交于點M,直線DP與y軸相交于點N.
(1)求圓C的方程;
(2)試問:直線MN是否經(jīng)過定點?若經(jīng)過定點,求出此定點坐標;若不經(jīng)過,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�