已知數(shù)列是等差數(shù)列,且,;又若是各項(xiàng)為正數(shù)的等比數(shù)列,且滿足,其前項(xiàng)和為,.
(1)分別求數(shù)列,的通項(xiàng)公式,;
(2)設(shè)數(shù)列的前項(xiàng)和為,求的表達(dá)式,并求的最小值.
(1) , ;(2) ,.
【解析】
試題分析:(1)首先設(shè)出公差和公比,根據(jù)已知條件及等比數(shù)列和等差數(shù)列的性質(zhì),列方程組解方程組,求得公差和公比,寫出各自的通項(xiàng)公式;(2)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122208595699401542/SYS201312220901040757697862_DA.files/image005.png">取偶數(shù)和奇數(shù)時,數(shù)列的項(xiàng)數(shù)會有變化,所以對分取偶數(shù)和奇數(shù)兩種情況進(jìn)行討論,根據(jù)等差數(shù)列和等比數(shù)列的前項(xiàng)和公式,求出的表達(dá)式,根據(jù)前后兩項(xiàng)的變化確定的單調(diào)性,求得每種情況下的最小值,比較一下,取兩個最小值中的較小者.
試題解析:(1)設(shè)數(shù)列的公差是,的公比為,
由已知得,解得,所以; 2分
又,解得或(舍去),所以; .4分
(2) 當(dāng)為偶數(shù)時,,
當(dāng)為奇數(shù)時. .10分
當(dāng)為偶數(shù)時,,所以先減后增,
當(dāng)時,,所以;
當(dāng)時,,所以;
所以當(dāng)為偶數(shù)時,最小值是. 12分
當(dāng)為奇數(shù)時,,所以先減后增,
當(dāng)時,,所以,
當(dāng)時,,所以,
所以當(dāng)為奇數(shù)時,最小值是.
比較一下這兩種情況下的的最小值,可知的最小值是. .14分
考點(diǎn):1、等差數(shù)列與等比數(shù)列的前項(xiàng)和公式;2、數(shù)列與函數(shù)單調(diào)性的綜合應(yīng)用;3、數(shù)列與求函數(shù)最值的綜合運(yùn)用;4、數(shù)列的函數(shù)特性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省杭十四中高一第二學(xué)期期中考試數(shù)學(xué) 題型:填空題
已知數(shù)列是等差數(shù)列,若,
,且,則_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年黑龍江省高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知數(shù)列是等差數(shù)列,,則首項(xiàng) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省高二5月第一次周考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列是等差數(shù)列,,數(shù)列的前n項(xiàng)和是,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)求證:數(shù)列是等比數(shù)列;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省高三下學(xué)期三月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,則的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省商丘市高三5月第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列{}是等差數(shù)列,且滿足:a1+a2+a3=6,a5=5;
數(shù)列{}滿足:-=(n≥2,n∈N﹡),b1=1.
(Ⅰ)求和;
(Ⅱ)記數(shù)列=(n∈N﹡),若{}的前n項(xiàng)和為,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com