4.函數(shù)y=e${\;}^{-{x}^{2}+2x}$(0≤x<3)的值域是( 。
A.(0,1]B.(e-3,e]C.[e-3,1]D.[1,e]

分析 先求出0≤x<3時(shí)-x2+2x的取值范圍,再根據(jù)指數(shù)函數(shù)的單調(diào)性求出值域.

解答 解:∵y=e${\;}^{-{x}^{2}+2x}$=e${\;}^{-(x-1)^{2}+1}$(0≤x<3),
當(dāng)0≤x<3時(shí),-3<-(x-1)2+1≤1,
∴e-3<e${\;}^{-(x-1)^{2}+1}$≤e1
即e-3<y≤e;
∴函數(shù)y的值域是(e-3,e].
故選:B.

點(diǎn)評(píng) 本題考查了求復(fù)合函數(shù)的值域問題,解題時(shí)應(yīng)考查復(fù)合函數(shù)的單調(diào)性,從而求出函數(shù)的值域,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,x),若$\overrightarrow{a}$+$\overrightarrow$與$2\overrightarrow a-\overrightarrow b$平行,則實(shí)數(shù)x的值是( 。
A.-2B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知A+B=$\frac{π}{3}$,則tanA+tanB+$\sqrt{3}$tanAtanB-$\sqrt{3}$的值等于( 。
A.-2$\sqrt{3}$B.2$\sqrt{3}$C.0D.1-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,三棱錐P-ABC中,PA⊥平面ABC,∠ABC=90°,PA=AC=2,D是PA的中點(diǎn),E是CD的中點(diǎn),點(diǎn)F在PB上,$\overrightarrow{PF}=3\overrightarrow{FB}$.
(1)證明:EF∥平面ABC;
(2)若∠BAC=60°,求點(diǎn)P到平面BCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)點(diǎn)F為橢圓$C:\frac{x^2}{4m}+\frac{y^2}{3m}=1(m>0)$的左焦點(diǎn),直線y=x被橢圓C截得弦長(zhǎng)為$\frac{{4\sqrt{42}}}{7}$.
(1)求橢圓C的方程;
(2)圓$P:{(x+\frac{{4\sqrt{3}}}{7})^2}+{(y-\frac{{3\sqrt{3}}}{7})^2}={r^2}(r>0)$與橢圓C交于A,B兩點(diǎn),M為線段AB上任意一點(diǎn),直線FM交橢圓C于P,Q兩點(diǎn)AB為圓P的直徑,且直線FM的斜率大于1,求|PF|•|QF|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知偶函數(shù)y=f(x)對(duì)于任意的$x∈[0,\frac{π}{2})$滿足f'(x)cosx+f(x)sinx>0(其中f'(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式中成立的是(  )
A.$\sqrt{2}f(-\frac{π}{3})<f(\frac{π}{4})$B.$\sqrt{2}f(-\frac{π}{3})<f(-\frac{π}{4})$C.$f(0)>\sqrt{2}f(-\frac{π}{4})$D.$f(\frac{π}{6})<\sqrt{3}f(\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一個(gè)高為1的正三棱錐的底面正三角形的邊長(zhǎng)為6,則此三棱錐的側(cè)面積為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{bn}是等比數(shù)列,b9是3和5等差中項(xiàng),則b1b17=(  )
A.25B.16C.9D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a+\overrightarrow b=({1,-3}),\overrightarrow a-\overrightarrow b=({3,7})$,則$\overrightarrow a•\overrightarrow b$=-12.

查看答案和解析>>

同步練習(xí)冊(cè)答案