7.計(jì)算:
(1)${8^{\frac{1}{3}}}-{(6\frac{1}{4})^{\frac{1}{2}}}+{π^0}-{3^{-1}}$;
(2)$2{log_6}2+{log_6}9+\frac{3}{2}{log_3}\frac{1}{9}-{8^{\frac{2}{3}}}$.

分析 (1)利用指數(shù)冪的運(yùn)算性質(zhì)即可得出.
(2)利用對數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:(1)原式=$2-{(\frac{25}{4})^{\frac{1}{2}}}+1-\frac{1}{3}=2-\frac{5}{2}+\frac{2}{3}=\frac{1}{6}$.
(2)原式=$lo{g}_{6}({2}^{2}×9)$+$\frac{3}{2}×(-2)$log33-${2}^{3×\frac{2}{3}}$=2-3-4=-5.

點(diǎn)評 本題考查了指數(shù)冪與對數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$f(x)=\sqrt{1-x}+lg(1-3x)$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,1]B.(0,1]C.$(-∞,\frac{1}{3})$D.$(0,\frac{1}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x),g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論正確的是( 。
A.f(x)+g(x)是奇函數(shù)B.f(x)-g(x)是偶函數(shù)C.f(x)•g(x)是奇函數(shù)D.f(x)•g(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=xlnx+$\frac{1}{2}$mx2-(m+1)x+1.
(1)若g(x)=f'(x),討論g(x)的單調(diào)性;
(2)若f(x)在x=1處取得極小值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.不等式|x|<2x-1的解集為{x|x>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知2sinα+cosα=0,則sin2α-3cos2α-sin2α=(  )
A.-$\frac{17}{5}$B.-$\frac{17}{4}$C.-$\frac{16}{5}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若A為不等式組$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y-x≤2}\end{array}\right.$表示的平面區(qū)域,則當(dāng)a從-2連續(xù)變化到1時(shí),則直線x+y=a掃過A中的那部分區(qū)域的面積為( 。
A.1B.$\frac{3}{2}$C.$\frac{3}{4}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{2}$=1與橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1(a>0)有相同的焦點(diǎn),則a的值為( 。
A.$\sqrt{2}$B.$\sqrt{10}$C.4D.$\sqrt{34}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)i為虛數(shù)單位,在復(fù)平面上,復(fù)數(shù)$\frac{3}{(2-i)^{2}}$對應(yīng)的點(diǎn)到原點(diǎn)的距離為$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊答案