已知函數(shù),.
(1)若函數(shù)在上不具有單調(diào)性,求實(shí)數(shù)的取值范圍;
(2)若.
(。┣髮(shí)數(shù)的值;
(ⅱ)設(shè),,,當(dāng)時(shí),試比較,,的大。
(1)(2)(。2(ⅱ)
解析試題分析:將二次函數(shù)的解析式進(jìn)行配方,根據(jù)其開(kāi)口方向的對(duì)稱(chēng)軸得到該函數(shù)的單調(diào)區(qū)間, 函數(shù)在上不具有單調(diào)性,說(shuō)明二次函數(shù)的對(duì)稱(chēng)軸在區(qū)間內(nèi),由此便可求出的取值范圍;
(2)(。┯建立方程可解實(shí)數(shù)的值;
(ⅱ)分別根據(jù)二次函數(shù)、對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì)求出當(dāng)時(shí),,,各自的取值范圍,進(jìn)而比較它們的大小.
試題解析:解:(1)∵拋物線開(kāi)口向上,對(duì)稱(chēng)軸為,
∴函數(shù)在單調(diào)遞減,在單調(diào)遞增, 2分
∵函數(shù)在上不單調(diào)
∴,得,
∴實(shí)數(shù)的取值范圍為 5分
(2)(ⅰ)∵,
∴
∴實(shí)數(shù)的值為. 8分
(ⅱ)∵, 9分
,
,
∴當(dāng)時(shí),,,, 12分
∴. 13分
考點(diǎn):二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
經(jīng)市場(chǎng)調(diào)查,某種商品在過(guò)去50天的銷(xiāo)量和價(jià)格均為銷(xiāo)售時(shí)間t(天)的函數(shù),且銷(xiāo)售量近似地滿(mǎn)足f(t)=-2t+200(1≤t≤50,t∈N),前30天價(jià)格為g(t)=t+30(1≤t≤30,t∈N),后20天價(jià)格為g(t)=45(31≤t≤50,t∈N).
(1)寫(xiě)出該種商品的日銷(xiāo)售額S與時(shí)間t的函數(shù)關(guān)系式;
(2)求日銷(xiāo)售額S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))
處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N+),其中x1為正實(shí)數(shù).
(1)用xn表示xn+1;
(2)求證:對(duì)一切正整數(shù)n,xn+1≤xn的充要條件是x1≥2;
(3)若x1=4,記an=lg ,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某投資公司投資甲、乙兩個(gè)項(xiàng)目所獲得的利潤(rùn)分別是P(億元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗(yàn)公式P=,Q=t,今該公司將5億元投資于這兩個(gè)項(xiàng)目,其中對(duì)甲項(xiàng)目投資x(億元),投資這兩個(gè)項(xiàng)目所獲得的總利潤(rùn)為y(億元).求:
(1)y關(guān)于x的函數(shù)表達(dá)式.
(2)總利潤(rùn)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=a-是偶函數(shù),a為實(shí)常數(shù).
(1)求b的值.
(2)當(dāng)a=1時(shí),是否存在n>m>0,使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)某工廠某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)x千件,需另投入成本C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=x2+10x(萬(wàn)元);當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+-1 450(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)L(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)為偶函數(shù).
(1)求k的值;
(2)若方程f(x)=log4(a·2x-a)有且只有一個(gè)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若對(duì)任意b∈R,函數(shù)f(x)恒有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)(為實(shí)常數(shù))為奇函數(shù),函數(shù)().
(1)求的值;
(2)求在上的最大值;
(3)當(dāng)時(shí),對(duì)所有的及恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com