設(shè)函數(shù)(為實(shí)常數(shù))為奇函數(shù),函數(shù)().
(1)求的值;
(2)求在上的最大值;
(3)當(dāng)時(shí),對(duì)所有的及恒成立,求實(shí)數(shù)的取值范圍.
(1);(2);(3)或或.
解析試題分析:(1)根據(jù)為奇函數(shù)得到,恒有,從而計(jì)算出的值;(2)根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)對(duì)進(jìn)行分類討論確定函數(shù)的單調(diào)性,從而由單調(diào)性求出在的最大值;(3)先根據(jù)(2)計(jì)算出,然后將不等式的恒成立問(wèn)題轉(zhuǎn)化成對(duì)恒成立,接著構(gòu)造關(guān)于的函數(shù),從而列出不等式組,求解不等式即可得出的取值范圍.
試題解析:(1)由得 ,∴ 2分
(2)∵ 3分
①當(dāng),即時(shí),在上為增函數(shù)
最大值為 5分
②當(dāng),即時(shí),在上為減函數(shù)
的最大值為 7分
8分
(3)由(2)得在上的最大值為
即在上恒成立 10分
令
即
所以或或 14分
考點(diǎn):1.一次與二次函數(shù)的圖像與性質(zhì);2.指數(shù)函數(shù)的圖像與性質(zhì);3.二次不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(1)若函數(shù)在上不具有單調(diào)性,求實(shí)數(shù)的取值范圍;
(2)若.
(。┣髮(shí)數(shù)的值;
(ⅱ)設(shè),,,當(dāng)時(shí),試比較,,的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對(duì)任意x>0,f(x)≤t恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某公司欲建連成片的網(wǎng)球場(chǎng)數(shù)座,用288萬(wàn)元購(gòu)買土地20000平方米,每座球場(chǎng)的建筑面積為1000平方米,球場(chǎng)每平方米的平均建筑費(fèi)用與所建的球場(chǎng)數(shù)有關(guān),當(dāng)該球場(chǎng)建n座時(shí),每平方米的平均建筑費(fèi)用表示,且(其中),又知建5座球場(chǎng)時(shí),每平方米的平均建筑費(fèi)用為400元.
(1)為了使該球場(chǎng)每平方米的綜合費(fèi)用最省(綜合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和),公司應(yīng)建幾座網(wǎng)球場(chǎng)?
(2)若球場(chǎng)每平方米的綜合費(fèi)用不超過(guò)820元,最多建幾座網(wǎng)球場(chǎng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(為常數(shù)),函數(shù)定義為:對(duì)每一個(gè)給定的實(shí)數(shù),
(1)求證:當(dāng)滿足條件時(shí),對(duì)于,;
(2)設(shè)是兩個(gè)實(shí)數(shù),滿足,且,若,求函數(shù)在區(qū)間上的單調(diào)遞增區(qū)間的長(zhǎng)度之和.(閉區(qū)間的長(zhǎng)度定義為)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
近日,國(guó)家經(jīng)貿(mào)委發(fā)出了關(guān)于深入開(kāi)展增產(chǎn)節(jié)約運(yùn)動(dòng),大力增產(chǎn)市場(chǎng)適銷對(duì)路產(chǎn)品的通知,并發(fā)布了當(dāng)前國(guó)內(nèi)市場(chǎng)185種適銷工業(yè)品和42種滯銷產(chǎn)品的參考目錄。為此,一公司舉行某產(chǎn)品的促銷活動(dòng),經(jīng)測(cè)算該產(chǎn)品的銷售量P萬(wàn)件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用x萬(wàn)元滿足(其中,a為正常數(shù));已知生產(chǎn)該產(chǎn)品還需投入成本(10+2P)萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為萬(wàn)元/萬(wàn)件.
(1)將該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷費(fèi)用x萬(wàn)元的函數(shù);
(2)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)是大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),.
(Ⅰ)證明:;
(Ⅱ)求證:在數(shù)軸上,介于與之間,且距較遠(yuǎn);
(Ⅲ)在數(shù)軸上,之間的距離是否可能為整數(shù)?若有,則求出這個(gè)整數(shù);若沒(méi)有,
說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某種海洋生物身體的長(zhǎng)度(單位:米)與生長(zhǎng)年限t(單位:年)
滿足如下的函數(shù)關(guān)系:.(設(shè)該生物出生時(shí)t=0)
(1)需經(jīng)過(guò)多少時(shí)間,該生物的身長(zhǎng)超過(guò)8米;
(2)設(shè)出生后第年,該生物長(zhǎng)得最快,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)已知函數(shù).
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)求證:;
(Ⅲ)對(duì)于函數(shù)與定義域上的任意實(shí)數(shù),若存在常數(shù),使得和都成立,則稱直線為函數(shù)與的“分界線”.設(shè)函數(shù),,與是否存在“分界線”?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com