(2011•湖北)平面內(nèi)與兩定點A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(1)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(2)當m=﹣1時,對應的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應的曲線為C2,設F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓經(jīng)過點,離心率,直線與橢圓交于,兩點,向量,,且.
(1)求橢圓的方程;
(2)當直線過橢圓的焦點(為半焦距)時,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓的圓心在坐標原點,且恰好與直線相切,設點A為圓上一動點,軸于點,且動點滿足,設動點的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知直線與橢圓相交于兩點,點是線段上的一點,且點在直線上.
(1)求橢圓的離心率;
(2)若橢圓的焦點關(guān)于直線的對稱點在單位圓上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓,、是橢圓的左右焦點,且橢圓經(jīng)過點.
(1)求該橢圓方程;
(2)過點且傾斜角等于的直線,交橢圓于、兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的左、右焦點分別為,上頂點為A,在x軸負半軸上有一點B,滿足三點的圓與直線相切.
(1)求橢圓C的方程;
(2)過右焦點作斜率為k的直線與橢圓C交于M,N兩點,線段MN的垂直平分線與x軸相交于點P(m,0),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的離心率為,短軸一個端點到右焦點的距離為.
(1)求橢圓C的方程;
(2)設直線與橢圓C交于A、B兩點,以弦為直徑的圓過坐標原點,試探討點到直線的距離是否為定值?若是,求出這個定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓,直線的方程為,過右焦點的直線與橢圓交于異于左頂點的兩點,直線,交直線分別于點,.
(1)當時,求此時直線的方程;
(2)試問,兩點的縱坐標之積是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的兩個焦點分別為和,離心率.
(1)求橢圓的方程;
(2)設直線()與橢圓交于、兩點,線段 的垂直平分線交軸于點,當變化時,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com