已知直線與橢圓相交于兩點(diǎn),點(diǎn)是線段上的一點(diǎn),且點(diǎn)在直線上.
(1)求橢圓的離心率;
(2)若橢圓的焦點(diǎn)關(guān)于直線的對稱點(diǎn)在單位圓上,求橢圓的方程.
(1);(2)
解析試題分析:(1)設(shè)、,由題中的直線方程與橢圓方程聯(lián)立消去,得,由韋達(dá)定理得,進(jìn)而得到,因此得的中點(diǎn),且點(diǎn)在直線上建立關(guān)系得,進(jìn)而得離心率的值;
(2)由(1)的結(jié)論,設(shè)橢圓的一個焦點(diǎn)關(guān)于直線的對稱點(diǎn)為,且被直線垂直且平分建立方程組,解之得且,結(jié)合點(diǎn)在單位圓上,得到關(guān)于的方程,并解得,由此即可得到橢圓方程.
(1)由知M是AB的中點(diǎn),
設(shè)A、B兩點(diǎn)的坐標(biāo)分別為
由
,
∴M點(diǎn)的坐標(biāo)為
又M點(diǎn)的直線l上:
,
(2)由(1)知,根據(jù)對稱性,不妨設(shè)橢圓的右焦點(diǎn)關(guān)于直線l:上的對稱點(diǎn)為,
則有
由已知,
∴所求的橢圓的方程為
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及簡單的幾何性質(zhì);兩點(diǎn)關(guān)于一條直線對稱;直線與橢圓的位置關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離比它到軸的距離多1,記點(diǎn)的軌跡為.
(1)求軌跡為的方程;
(2)設(shè)斜率為的直線過定點(diǎn),求直線與軌跡恰好有一個公共點(diǎn),兩個公共點(diǎn),三個公共點(diǎn)時的相應(yīng)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(2011•重慶)如圖,橢圓的中心為原點(diǎn)O,離心率e=,一條準(zhǔn)線的方程為x=2.
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)動點(diǎn)P滿足,其中M,N是橢圓上的點(diǎn).直線OM與ON的斜率之積為﹣.
問:是否存在兩個定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值.若存在,求F1,F(xiàn)2的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓:的左頂點(diǎn)為,直線交橢圓于兩點(diǎn)(上下),動點(diǎn)和定點(diǎn)都在橢圓上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點(diǎn)的坐標(biāo).
(3)若為實(shí)數(shù),,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:( )的離心率為,點(diǎn)(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的兩條切線交于點(diǎn)M(4,),其中,切點(diǎn)分別是A、B,試?yán)媒Y(jié)論:在橢圓上的點(diǎn)()處的橢圓切線方程是,證明直線AB恒過橢圓的右焦點(diǎn);
(3)試探究的值是否恒為常數(shù),若是,求出此常數(shù);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖為橢圓C:的左、右焦點(diǎn),D,E是橢圓的兩個頂點(diǎn),橢圓的離心率,的面積為.若點(diǎn)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個“橢圓”,直線與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢圓”分別為P,Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)問是否存在過左焦點(diǎn)的直線,使得以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出該直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2011•湖北)平面內(nèi)與兩定點(diǎn)A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓成雙曲線.
(1)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(2)當(dāng)m=﹣1時,對應(yīng)的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應(yīng)的曲線為C2,設(shè)F1、F2是C2的兩個焦點(diǎn).試問:在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知,,,分別是橢圓的四個頂點(diǎn),△是一個邊長為2的等邊三角形,其外接圓為圓.
(1)求橢圓及圓的方程;
(2)若點(diǎn)是圓劣弧上一動點(diǎn)(點(diǎn)異于端點(diǎn),),直線分別交線段,橢圓于點(diǎn),,直線與交于點(diǎn).
(ⅰ)求的最大值;
(ⅱ)試問:,兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com