【題目】已知函數(shù)f(x)=alnx﹣4x,g(x)=﹣x2﹣3. (Ⅰ)求函數(shù)f(x)在x=1處的切線方程;
(Ⅱ)若存在x0∈[e,e2],使得f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍.
【答案】解:(Ⅰ)∵f(x)=alnx﹣4x,
∴f′(x)= ,
∴f′(1)=a﹣4,
故切線方程為y=(a﹣4)x﹣a;
(Ⅱ)h(x)=alnx+x2﹣4x+3,
∴h′(x)= ,
①若△=16﹣8a≤0,即a≥2,則h′(x)≥0,
則h(x)在(1,+∞)上單調(diào)遞增,又h(1)=0,不符舍去
②若△>0,則a<2,
令h′(x)>0得x>1+ ,令h′(x)<0得0<x<1+ ,
則h(x)在(0,1+ )上單調(diào)遞減,在(1+ ,+∞)單調(diào)遞增,
又h(1)=0,則必有h(e)<0
即a+e2﹣4e+3<0,
∴a<﹣e2+4e﹣3
【解析】(Ⅰ)求導(dǎo)數(shù),可得切線斜率,求出切點(diǎn)坐標(biāo),即可求函數(shù)f(x)在x=1處的切線方程;(Ⅱ)h(x)=alnx+x2﹣4x+3,求導(dǎo)數(shù),分類討論,確定單調(diào)性,即可求實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是正方形,側(cè)棱底面, , 是的中點(diǎn),過點(diǎn)作交于點(diǎn).
(1)證明: 平面;
(2)證明: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+2)=f(x).當(dāng)x∈[0,1]時(shí),f(x)=2x.若在區(qū)間[﹣2,3]上方程ax+2a﹣f(x)=0恰有四個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( )
A.( , )
B.( , )
C.( ,2)
D.(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足: ,且該函數(shù)的最小值為1.
(1)求此二次函數(shù)的解析式;
(2)若函數(shù)的定義域?yàn)?/span>(其中),問是否存在這樣的兩個(gè)實(shí)數(shù), ,使得函數(shù)的值域也為?若存在,求出, 的值;若不存在,請(qǐng)說明理由.
(3)若對(duì)于任意的,總存在使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 底面, , , , 為棱的中點(diǎn).
(1)求證: ;
(2)試判斷與平面是否平行?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]上單調(diào)遞增,則φ的取值范圍是( )
A.[ , ]
B.[ , )
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M(x0 , 2 )(x0> )是拋物線C上一點(diǎn),圓M與線段MF相交于點(diǎn)A,且被直線x= 截得的弦長(zhǎng)為 |MA|,若 =2,則|AF|等于( )
A.
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣k( +lnx),若x=2是函數(shù)f(x)的唯一一個(gè)極值點(diǎn),則實(shí)數(shù)k的取值范圍為( )
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M: 和點(diǎn) ,動(dòng)圓P經(jīng)過點(diǎn)N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點(diǎn)A是曲線E與x軸正半軸的交點(diǎn),點(diǎn)B,C在曲線E上,若直線AB,AC的斜率分別是k1 , k2 , 滿足k1k2=9,求△ABC面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com