【題目】某市8所中學(xué)生參加比賽的得分用莖葉圖表示(如圖)其中莖為十位數(shù),葉為個(gè)位數(shù),則這組數(shù)據(jù)的平均數(shù)和方差分別是(

A.91 5.5
B.91 5
C.92 5.5
D.92 5

【答案】A
【解析】解:把莖葉圖中的數(shù)據(jù)按大小順序排列,如下;87、88、90、91、92、93、94、97;
∴平均數(shù)是 (87+88+90+91+92+93+94+97)=91.5,
S2= [(87﹣91.5)2+(88﹣91,5)2+(90﹣91.5)2+…+(97﹣91.5)2]=5,
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解莖葉圖的相關(guān)知識(shí),掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為了解轄區(qū)住戶中離退休老人每天的平均戶外活動(dòng)時(shí)間,從轄區(qū)住戶的離退休老人中隨機(jī)抽取了100位老人進(jìn)行調(diào)查,獲得了每人每天的平均戶外活動(dòng)時(shí)間(單位:小時(shí)),活動(dòng)時(shí)間按照[0,0.5),[0.5,1),…,[4,4.5]從少到多分成9組,制成樣本的頻率分布直方圖如圖所示.

Ⅰ)求圖中a的值;

Ⅱ)估計(jì)該社區(qū)住戶中離退休老人每天的平均戶外活動(dòng)時(shí)間的中位數(shù);

(III)在[1.5,2)、[2,2.5)這兩組中采用分層抽樣抽取9人,再從這9人中隨機(jī)抽取2人,求抽取的兩人恰好都在同一個(gè)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2ωx+2 sinωxcosωx﹣cos2ωx(ω>0),f(x)的圖象相鄰兩條對(duì)稱軸的距離為
(1)求f( )的值;
(2)將f(x)的圖象上所有點(diǎn)向左平移m(m>0)個(gè)長度單位,得到y(tǒng)=g(x)的圖象,若y=g(x)圖象的一個(gè)對(duì)稱中心為( ,0),當(dāng)m取得最小值時(shí),求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為, 傾斜角為的直線經(jīng)過橢圓的右焦點(diǎn)且與圓相切.

(1)求橢圓 的方程;

(2)若直線與圓相切于點(diǎn), 且交橢圓兩點(diǎn),射線于橢圓交于點(diǎn),設(shè)的面積與的面積分別為.

①求的最大值; ②當(dāng)取得最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程的曲線即為函數(shù)的圖像,對(duì)于函數(shù),有如下結(jié)論:①上單調(diào)遞減;②函數(shù)不存在零點(diǎn);③函數(shù)的值域是;④的圖像不經(jīng)過第一象限,其中正確結(jié)論的個(gè)數(shù)是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的三邊長滿足,則的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)當(dāng)時(shí),求函數(shù)的值域

(2)當(dāng)時(shí),設(shè),若給定,對(duì)于兩個(gè)大于1的正數(shù),存在滿足:,使恒成立,求實(shí)數(shù)的取值范圍.

(3)當(dāng)時(shí),設(shè),若的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過拋物線E:y2=2px(p>0)的焦點(diǎn)F且與x垂直,l與E所圍成的封閉圖形的面積為24,若點(diǎn)P為拋物線E上任意一點(diǎn),A(4,1),則|PA|+|PF|的最小值為( )
A.6
B.4+2
C.7
D.4+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知曲線,將曲線上所有點(diǎn)橫坐標(biāo),縱坐標(biāo)分別伸長為原來的倍和倍后,得到曲線

(1)試寫出曲線的參數(shù)方程;

(2)在曲線上求點(diǎn),使得點(diǎn)到直線的距離最大,并求距離最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案