【題目】已知函數(shù)f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a為常數(shù)) (Ⅰ)當a=4時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若對于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一個實根,求a的取值范圍.

【答案】解:(1)函數(shù)f(x)的定義域為(0,+∞) 由
當a=4時,
∴函數(shù)f(x)在(0,1)上單調(diào)遞增,在(1,2)上單調(diào)遞減,(2,+∞)在上單調(diào)遞增;
(Ⅱ)由
當a≤2時,
∵f'(x)>0對于x∈(1,+∞)恒成立,
∴f(x)在(1,+∞)上單調(diào)遞增
∴f(x)>f(1)=0,此時命題成立;
當a>2時,
∵f(x)在 上單調(diào)遞減,在 上單調(diào)遞增,
∴當 時,有f(x)<f(1)=0.這與題設(shè)矛盾,不合.
故a的取值范圍是(﹣∞,2];
(Ⅱ)依題意,設(shè)g(x)=f(x)+a+1,
原題即為若g(x)在(1,2)上有且只有一個零點,求a的取值范圍.
顯然函數(shù)g(x)與f(x)的單調(diào)性是一致的.
當a≤0時,因為函數(shù)g(x)在(1,2)上遞增,
由題意可知 ,
解得
當a>0時,因為g(x)=(x﹣1)2+alnx+(2﹣x)a+1,
當x∈(1,2)時,總有g(shù)(x)>0,此時方程沒有實根.
綜上所述,當 時,方程f(x)+a+1=0在x∈(1,2)上有且只有一個實根.
【解析】(Ⅰ)根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出,(Ⅱ)分類討論,確定函數(shù)的單調(diào)性,從而解得;(Ⅲ)依題意,設(shè)g(x)=f(x)+a+1,原題即為若g(x)在(1,2)上有且只有一個零點,求a的取值范圍.顯然函數(shù)g(x)與f(x)的單調(diào)性是一致的,根據(jù)函數(shù)的單調(diào)性,當a<0,即可得到可知 ,解得即可,當a≥0,判斷此時方程沒有實根,問題得以解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f′′(x)是f′(x)的導(dǎo)數(shù),若方程f′′(x)有實數(shù)解x0 , 則稱點(x0 , f(x0))為函數(shù)y=f(x)的“拐點”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.設(shè)函數(shù)f(x)= x3 x2+3x﹣ ,請你根據(jù)這一發(fā)現(xiàn),計算f( )+f( )+f( )+…+f( )=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)﹣ x.
(1)試判斷函數(shù)f(x)的奇偶性并證明;
(2)設(shè)g(x)=log4(a2x a),若函數(shù)f(x)與g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)“2015年國民經(jīng)濟和社會發(fā)展統(tǒng)計公報” 中公布的數(shù)據(jù),從2011 年到2015 年,我國的

第三產(chǎn)業(yè)在中的比重如下:

年份

年份代碼

第三產(chǎn)業(yè)比重

(1)在所給坐標系中作出數(shù)據(jù)對應(yīng)的散點圖;

(2)建立第三產(chǎn)業(yè)在中的比重關(guān)于年份代碼的回歸方程;

(3)按照當前的變化趨勢,預(yù)測2017 年我國第三產(chǎn)業(yè)在中的比重.

附注: 回歸直線方程中的斜率和截距的最小二乘估計公式分別為:

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列各組中兩個函數(shù)是否為同一函數(shù).
(1)f(x)=x2+2x﹣1,g(x)=t2+2t﹣1;
(2)f(x)= , g(x)=x+1;
(3)f(x)= , g(x)=
(4)f(x)=|3﹣x|+1,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)單調(diào)遞增,其中.

(1)求的值;

(2)若,當時,試比較的大小關(guān)系(其中的導(dǎo)函數(shù)),請寫出詳細的推理過程;

(3)當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間直角坐標系中,已知A(3,0,1)和B(1,0,-3),試問
(1)在y軸上是否存在點M,滿足 ?
(2)在y軸上是否存在點M,使△MAB為等邊三角形?若存在,試求出點M坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x|﹣|2x﹣1|,記f(x)>﹣1的解集為M.
(1)求M;
(2)已知a∈M,比較a2﹣a+1與 的大小.

查看答案和解析>>

同步練習(xí)冊答案