已知{an}是公比為q的等比數(shù)列,且a2,a4,a3成等差數(shù)列,則q=   
【答案】分析:先利用等比數(shù)列的性質(zhì)分別用a2和q表示出a3和a4,進而代入2a4=a2+a3中求得q.
解答:解:a3=qa2,a4=q2•a2
∵a2,a4,a3成等差數(shù)列
∴2a4=a2+a3
即2a2•q2=a2+q•a2
解得,q=1或-
故答案為1或-
點評:本題主要考查了等差數(shù)列和等比數(shù)列的性質(zhì).屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公比為常數(shù)q的等比數(shù)列,若a4,a5+a7,a6成等差數(shù)列,則q等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公比為q的等比數(shù)列,且a1,a3,a2成等差數(shù)列,則q=(  )
A、1或-
1
2
B、1
C、-
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公比為2的等比數(shù)列,若a3-a1=6,則
1
a
2
1
+
1
a
2
2
+…+
1
a
2
n
=
1
3
(1-
1
4n
)
1
3
(1-
1
4n
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•西城區(qū)一模)已知{an}是公比為q的等比數(shù)列,且a1+2a2=3a3
(Ⅰ)求q的值;
(Ⅱ)設(shè){bn}是首項為2,公差為q的等差數(shù)列,其前n項和為Tn.當(dāng)n≥2時,試比較bn與Tn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公比為2的等比數(shù)列,若a3-a1=6,則a1+a2+…+an=
 

查看答案和解析>>

同步練習(xí)冊答案