【題目】下列4個(gè)命題:

(1)有兩個(gè)面互相平行,其余四個(gè)面都是全等的等腰梯形的六面體是正四棱臺;

(2)底面是正三角形,其余各面都是等腰三角形的棱錐是正三棱錐;

(3)各側(cè)面都是等腰三角形的四棱錐是正四棱錐;

(4)底面是正三角形,相鄰兩側(cè)而所成的二面角都相等的三棱錐是正三棱錐

中,假命題的個(gè)數(shù)為( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】D

【解析】

對所給4個(gè)命題,各舉反例如下:

如圖,兩個(gè)全等的矩形同垂直于其中心連線,且對應(yīng)邊互相垂直(相當(dāng)于一個(gè)矩形繞中心線旋轉(zhuǎn)了),這個(gè)六面體不是正四梭臺;

如圖,三梭錐中,,,這個(gè)三棱錐不是正三梭錐;

如圖,四棱錐是圓錐的內(nèi)接棱錐,其中是圓錐底面的直徑,四梭錐不是正四棱錐;

如圖,正三棱錐中,棱內(nèi)存在點(diǎn),使,則三棱錐不是正三棱錐.

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,且滿足.

1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;

2)求數(shù)列的前項(xiàng)和;

3)若,如果對任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)證明:,直線都不是曲線的切線;

(2)若,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某便利店每天以每件5元的價(jià)格購進(jìn)若干鮮奶,然后以每件10元價(jià)格出售,如果當(dāng)天賣不完,剩下的鮮奶作餐廚垃圾處理.便利店記錄了100天這種鮮奶的日需求量(單位:件)如表所示:

日需求量n(件)

140

150

160

170

180

190

200

頻數(shù)

10

20

16

16

15

12

11

100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

1)若便利店一天購進(jìn)160件這種鮮奶,X表示當(dāng)天的利潤(單位:元),求X的分布列與數(shù)學(xué)期望及方差;

2)若便利店一天購進(jìn)160件或170件這種鮮奶,僅從獲得利潤大的角度考慮,你認(rèn)為應(yīng)購進(jìn)160件還是170件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.

方案一:每滿100元減20元;

方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽。,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)

紅球個(gè)數(shù)

3

2

1

0

實(shí)際付款

7

8

9

原價(jià)

1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;

2)若某顧客購物金額為180元,選擇哪種方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.

1)求證; 

2)求平面與平面所成二面角的大小;

3)設(shè)棱的中點(diǎn)為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計(jì)如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將, 三件禮物隨機(jī)分成兩個(gè)包裹寄出,求該人支付的快遞費(fèi)不超過元的概率;

(2)該公司從收取的每件快遞的費(fèi)用中抽取元作為前臺工作人員的工資和公司利潤,剩余的作為其他費(fèi)用.前臺工作人員每人每天攬件不超過件,工資元,目前前臺有工作人員人,那么,公司將前臺工作人員裁員人對提高公司利潤是否更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程是(θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:

(1)求曲線C的極坐標(biāo)方程;

(2)設(shè)直線θ=與直線l交于點(diǎn)M,與曲線C交于P,Q兩點(diǎn),已知|OM||OP||OQ)=10,求t的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩班各派三名同學(xué)參加知識競賽,每人回答一個(gè)問題,答對得10分,答錯(cuò)得0分,假設(shè)甲班三名同學(xué)答對的概率都是,乙班三名同學(xué)答對的概率分別是,,且這六名同學(xué)答題正確與否相互之間沒有影響.

1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;

2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案