在等差數(shù)列{an}中,3(a3+a5)+2(a7+a10+a13)=24,則此數(shù)列前13項(xiàng)的和是( 。
分析:可得a3+a5=2a4,a7+a13=2a10,代入已知可得a4+a10=4,而S13=
13(a1+a13)
2
=
13(a4+a10)
2
,代入計(jì)算可得.
解答:解:由等差數(shù)列的性質(zhì)可得:a3+a5=2a4,a7+a13=2a10,
代入已知可得3×2a4+2×3a10=24,即a4+a10=4,
故數(shù)列的前13項(xiàng)之和S13=
13(a1+a13)
2

=
13(a4+a10)
2
=
13×4
2
=26
故選B
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)和求和公式,涉及整體代入的思想,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-2010,其前n項(xiàng)的和為Sn.若
S2010
2010
-
S2008
2008
=2,則S2010=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+3a8+a15=60,則2a9-a10的值為
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的兩個(gè)根,那么使得前n項(xiàng)和Sn為負(fù)值的最大的n的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若S4=1,S8=4,則a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案