已知點P在曲線y=
4
ex+1
上,k為曲線在點P處的切線的斜率,則k的取值范圍是
 
考點:導(dǎo)數(shù)的幾何意義
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義求解即可.
解答: 解:∵y=
4
ex+1
,
∴y′=-
4e
(ex+1)2
<0
∵k為曲線在點P處的切線的斜率,
∴k的取值范圍是(-∞,0).
故答案為:(-∞,0).
點評:本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點切線方程等基礎(chǔ)知識,考查運算求解能力.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的準(zhǔn)線與圓x2+y2-4x-5=0相切,則p值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-2,0,1,3},在平面直角坐標(biāo)系中,點M(a,b)的坐標(biāo)滿足a∈A,b∈A.
(1)求點M不在y軸上的概率;
(2)求點M坐標(biāo)(a,b)使方程x2+ax-b=0恰有一正根和一負(fù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點坐標(biāo)是A(3,-4),B(0,3),C(-6,0),求:
(1)BC邊所在直線的點方向式方程;
(2)BC邊上的高AD所在直線的點法向式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為2的正方體ABCD-A1B1C1D1中,E是BC1的中點.F是底面ABCD的中心,
(Ⅰ)求直線EF與平面ABCD所成角;
(Ⅱ)求證:EF∥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,若輸入x的值為-5,求輸出的y值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校高一有男生350人,用隨機抽樣方法抽取150人的身高為樣本分析該校男生發(fā)育情況.頻率分布表和直方圖如下,但是某些數(shù)據(jù)丟失了,請你補出丟失內(nèi)容并回答下列問題.
(1)求a,b,c,d,e;  
(2)求頻率分布直方圖[170,175)的柱高.
(3)估計該校高一男生身高在[180,185)的學(xué)生數(shù).
分組頻數(shù)頻率
[160,165)9a
[165,170)b0.36
[170,175)66c
[175,180)d0.1
[180,185)6e
合計1501

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足:1<x<2<y<3,
(Ⅰ)求x•y的取值范圍;
(Ⅱ)求x-2y的取值范圍:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈R,用[x]表示不超過x的最大整數(shù),已知函數(shù)f(x)=2x,g(x)=f-1(x),數(shù)列{an}的通項公式為an=
1
nf′(n)g′(n)
,n∈N+,Sn是該數(shù)列的前n項的和,則[Sn-
1
2
]等于
 

查看答案和解析>>

同步練習(xí)冊答案