【題目】2019年全國掀起了垃圾分類的熱潮,垃圾分類已經(jīng)成為新時(shí)尚,同時(shí)帶動(dòng)了垃圾桶的銷售.某垃圾桶生產(chǎn)和銷售公司通過數(shù)據(jù)分析,得到如下規(guī)律:每月生產(chǎn)只垃圾桶的總成本由固定成本和生產(chǎn)成本組成,其中固定成本為100萬元,生產(chǎn)成本為.

1)寫出平均每只垃圾桶所需成本關(guān)于的函數(shù)解析式,并求該公司每月生產(chǎn)多少只垃圾桶時(shí),可使得平均每只所需成本費(fèi)用最少?

2)假設(shè)該類型垃圾桶產(chǎn)銷平衡(即生產(chǎn)的垃圾桶都能賣掉),每只垃圾桶的售價(jià)為元,滿足.若當(dāng)產(chǎn)量為15000只時(shí)利潤最大,此時(shí)每只售價(jià)為300元,試求的值.(利潤銷售收入成本費(fèi)用)

【答案】1)每只的成本費(fèi)用為250.2,.

【解析】

1)由題意寫出生產(chǎn)成本的表達(dá)式,可得,利用基本不等式計(jì)算的最小值,并求出所對應(yīng)的的值;

2)由題意可得利潤函數(shù),結(jié)合題意列出方程,可得的值.

解:(1)由題意知,生產(chǎn)成本為,

所以.

當(dāng)且僅當(dāng),即時(shí),取得最小值250.

即該公司生產(chǎn)1萬只垃圾桶時(shí),使得每只平均所需成本費(fèi)用最少,且每只的成本費(fèi)用為250.

2)由已知可得,利潤

.

因?yàn)楫?dāng)產(chǎn)量為15000只時(shí)利潤最大,此時(shí)每只售價(jià)為300元,

所以

解得,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,的中點(diǎn).

(1)證明:平面;

(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且, ,則數(shù)列中的為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】科技引領(lǐng),布局未來科技研發(fā)是企業(yè)發(fā)展的驅(qū)動(dòng)力量.2007~2018年,某企業(yè)連續(xù)12年累計(jì)研發(fā)投入達(dá)4100億元,我們將研發(fā)投入與經(jīng)營投入的比值記為研發(fā)投入占營收比,這12年間的研發(fā)投入(單位:十億元)用圖中的條形圖表示,研發(fā)投入占營收比用圖中的折線圖表示.根據(jù)折線圖和條形圖,下列結(jié)論正確的有(

A.2012年至2013年研發(fā)投入占營收比增量相比2017年至2018年研發(fā)投入占營收比增量大

B.2013年至2014年研發(fā)投入增量相比2015年至2016年研發(fā)投入增量小

C.該企業(yè)連續(xù)12年來研發(fā)投入逐年增加

D.該企業(yè)連續(xù)12年來研發(fā)投入占營收比逐年增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個(gè)廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點(diǎn)在⊙O上,A,B,C,D恰是一個(gè)正方形的四個(gè)頂點(diǎn).根據(jù)規(guī)劃要求,在A,B,CD四點(diǎn)處安裝四盞照明設(shè)備,從圓心O點(diǎn)出發(fā),在地下鋪設(shè)4條到A,BC,D四點(diǎn)線路OA,OB,OC,OD.

1)若正方形邊長為10米,求廣場的面積;

2)求鋪設(shè)的4條線路OA,OBOC,OD總長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自201911日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整,調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額,依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:

個(gè)人所得稅稅率表(調(diào)整前)

個(gè)人所得稅稅率表(調(diào)整后)

免征額3500

免征額5000

級數(shù)

全月應(yīng)納稅所得額

稅率(%

級數(shù)

全月應(yīng)納稅所得額

稅率(%

1

不超過1500元部分

3

1

不超過3000元部分

3

2

超過1500元至4500元的部分

10

2

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

3

超過12000元至25000元的部分

20

某稅務(wù)部門在某公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:

收入(元)

人數(shù)

30

40

10

8

7

5

1)若某員工2月的工資、薪金等稅前收入為7500元時(shí),請計(jì)算一下調(diào)整后該員工的實(shí)際收入比調(diào)整前增加了多少?

2)現(xiàn)從收入在的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識(shí)宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),設(shè)隨機(jī)變量,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形, 邊上的動(dòng)點(diǎn)(含端點(diǎn)),記,.

(1)求的最大值;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的導(dǎo)函數(shù)為,若函數(shù)的圖象關(guān)于直線對稱,且.

1)求實(shí)數(shù)ab的值;

2)若函數(shù)恰有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為4,且過點(diǎn)

1)求橢圓的方程

2)設(shè)橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線與橢圓交于兩點(diǎn),問是否存在直線,使得的垂心,若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案