已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0]時(shí),f(x)=e-x-ex2+a,則函數(shù)f(x)在x=1處的切線方程為


  1. A.
    x+y=0
  2. B.
    ex-y+1-e=0
  3. C.
    ex+y-1-e=0
  4. D.
    x-y=0
B
分析:利用f(0)=0先求出a的值,設(shè)x∈(0,+∞),根據(jù)已知條件求出f(-x),再利用奇函數(shù),求出f(x)在(0,+∞)上的解析式,同時(shí)可求出導(dǎo)函數(shù);求出切點(diǎn)坐標(biāo),再求出該點(diǎn)處的導(dǎo)數(shù)即為切線的斜率,利用點(diǎn)斜式表示出直線方程即可.
解答:由題意得,f(0)=1-0+a=0,解得a=-1,
∴當(dāng)x∈(-∞,0]時(shí),f(x)=e-x-ex2-1,
設(shè)x∈(0,+∞),則-x<0,f(-x)=ex-ex2-1,
∵f(x)是定義在R上的奇函數(shù),
∴f(x)=-f(-x)=-ex+ex2+1,此時(shí)x∈(0,+∞),
∴f′(x)=-ex+2ex,
∴f(1)=e,
把x=1代入f(x)=-ex+ex2+1得,f(1)=1,則切點(diǎn)為(1,1),
∴所求的切線方程為:y-1=e(x-1),化簡(jiǎn)得ex-y-e+1=0,
故選B.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,奇函數(shù)性質(zhì)的利用,以及函數(shù)解析式,求函數(shù)在某范圍內(nèi)的解析式,一般先將自變量設(shè)在該范圍內(nèi),再想法轉(zhuǎn)化到已知范圍上去,考查了轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2
,
(1)計(jì)算:[f(1)]2-[g(1)]2;
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿(mǎn)足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案