已知.

(I)求函數(shù)的最小正周期;

(II)若求函數(shù)的最大值和最小值.

 

【答案】

(I)………(5分)

函數(shù)的最小正周期為……………………………(7分)

(II)………………(11分)

函數(shù)的最大值為,最小值為.

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)=ex-x (e為自然對數(shù)的底數(shù)).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集為P,若M={x|
12
≤x≤2
}且M∩P≠∅求實(shí)數(shù)a的取值范圍;
(3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差數(shù)列{an}和首項(xiàng)為f(I)公比大于0的等比數(shù)列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,請求出數(shù)列{an}、{bn}的通項(xiàng)公式.若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函致f (x)=x3+bx2+cx+d.
(I)當(dāng)b=0時(shí),證明:曲線y=f(x)與其在點(diǎn)(0,f(0))處的切線只有一個(gè)公共點(diǎn);
(Ⅱ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線為12x+y-13=0,記函數(shù)y=f(x)的兩個(gè)極值點(diǎn)為x1,x2,當(dāng)x1+x2=2時(shí),求f(x1)+f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實(shí)數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
(II)若對于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(x-
12
)的定義域?yàn)椋╪,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個(gè)數(shù)記為g(n).
(1)求出g(3)的值;
(2)求g(n)的表達(dá)式;
(3)若對于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實(shí)數(shù)l的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山西大學(xué)附中高三4月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共12分)已知函數(shù)的 部 分 圖 象如 圖 所示.

(I)求 函 數(shù)的 解 析 式;

(II)在△中,角的 對 邊 分 別 是,若的 取 值 范 圍.

 

查看答案和解析>>

同步練習(xí)冊答案